Comparative Analysis of Compressed Air Supply Methods Between Steam-Driven and Electric Air Compressors

GUO Xutao,DING Liwei,LYU Hongkun,HAN Gaoyan

Distributed Energy ›› 2023, Vol. 8 ›› Issue (3) : 24-29.

PDF(1164 KB)
PDF(1164 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (3) : 24-29. DOI: 10.16513/j.2096-2185.DE.2308304
Basic Research

Comparative Analysis of Compressed Air Supply Methods Between Steam-Driven and Electric Air Compressors

Author information +
History +

Abstract

In recent years, under the goal of "carbon peak and carbon neutrality", energy conservation and consumption reduction in industrial enterprises have attracted wide attention. As the second largest power source, the energy saving and efficiency improvement of air compressor is one of the key work at present. In this paper, technical analysis and research are carried out on four different driving forms of air compressors that are electric-driven, steam-driven of back pressure heating unit, steam-driven of condensing heating unit and steam-driven of condensing non-heating unit. Combined with the technical characteristics, the primary energy consumption, carbon emission and energy cost of compressed air are analyzed and compared. The results show that electric air compressor has the lowest carbon emissions and the highest energy costs, and the steam-driven air compressor coupled with the condensing heating unit or condensing non-heating unit has the worst effect than others in the primary energy consumption and carbon emissions. The steam-driven air compressor coupled with the back pressure heating unit is better than the electric air compressor in terms of primary energy consumption and carbon emission of compressed air.

Key words

centralized supply of compressed air / air compressor / heating unit / carbon emission / energy cost

Cite this article

Download Citations
Xutao GUO , Liwei DING , Hongkun LYU , et al. Comparative Analysis of Compressed Air Supply Methods Between Steam-Driven and Electric Air Compressors[J]. Distributed Energy Resources. 2023, 8(3): 24-29 https://doi.org/10.16513/j.2096-2185.DE.2308304

References

[1]
钟史明. 能源与环境:节能减排理论与研究[M]. 南京:东南大学出版社,2017: 8-12.
[2]
石映飞. 浅析压缩空气系统节能[J]. 冶金设备2022(): 118-121.
Abstract
S1
SHI Yingfei. A brief analysis of the energy saving measures of the air compressed station[J]. Metallurgical Equipment, 2022(): 118-121.
S1
[3]
文贤馗,张世海,盛勇,等. 压缩空气储能膨胀机进气阀严密性试验[J]. 分布式能源2017, 2(6): 26-30.
WEN Xiankui, ZHANG Shihai, SHENG Yong, et al. Inlet valve leak test for turbine expander of CAES[J]. Distributed Energy, 2017, 2(6): 26-30.
[4]
秦宏波,胡寿根. 工业压缩空气系统优化潜力研究[J]. 流体机械2010, 38(2): 49-52, 8.
QIN Hongbo, HU Shougen. Study on optimization potential of industrial compressed air system[J]. Fluid Machinery, 2010, 38(2): 49-52, 8.
[5]
金巍. 浅谈压缩空气系统节能[J]. 压缩机技术2010(6): 42-44.
[6]
严妉妉. 大型发电厂建设集中供气空压站方案研究[J]. 能源研究与利用2022(1): 52-55.
YAN Dandan. Research on the plan of centralized gas supply and air compression stations for large power plants[J]. Energy Research & Utilization, 2022(1): 52-55.
[7]
彭博,屈福军. 浅谈核电厂应急压缩空气生产系统的故障探究及处理[J]. 科技展望2016, 26(33): 30.
[8]
傅旭,李富春,杨欣,等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源2020, 5(3): 34-38.
FU Xun, LI Fuchun, YANG Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 34-38.
[9]
潘华,高旭,姚正,等. 计及储能效益的综合能源系统利益分配机制研究[J]. 智慧电力2022, 50(5): 25-32.
PAN Hua, GAO Xu, YAO Zheng, et al. Benefit allocation of integrated energy system considering energy storage benefit[J]. Smart Power, 2022, 50(5): 25-32.
[10]
贾振源. 关于压缩空气系统能耗及节能措施的理论研究[J]. 科技信息2012 (12): 102-103.
[11]
张思,杨晓雷,阙凌燕,等. 高比例光伏发电对浙江电网电力平衡的影响及应对策略[J]. 浙江电力2022, 41(11): 9-16.
ZHANG Si, YANG Xiaolei, QUE Lingyan, et al. The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures[J]. Zhejiang Electric Power, 2022, 41(11): 9-16.
[12]
虞国平,张新胜,屠海彪,等. 火电机组深度调峰工况辅机安全控制技术研究[J]. 浙江电力2021, 40(2): 85-90.
YU Guoping, ZHANG Xinsheng, TU Haibiao, et al. Research on auxiliary equipment control technology under operating condition of deep peak-regulation of thermal power generating units[J]. Zhejiang Electric Power, 2021, 40(2): 85-90.
[13]
王晓露. 火电厂热电联产机组与压缩空气储能系统热力学耦合研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所), 2021.
WANG Xiaolu. Study on thermodynamic coupling of cogeneration unit in thermal power plant and compressed air energy storage system[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2021.
[14]
于海存,殷建华,李荣丽,等. 基于电网考核指标的火电机组一次调频仿真与优化[J]. 内蒙古电力技术2022, 40(5): 80-85.
YU Haicun, YIN Jianhua, LI Rongli, et al. Simulation and optimization of primary frequency modulation of thermal power unit based on grid assessment index[J]. Inner Mongolia Electric Power, 2022, 40(5): 80-85.
[15]
李姚旺,苗世洪,尹斌鑫,等. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术2020, 41(1): 41-49.
LI Yaowang, MIAO Shihong, YIN Binxin, et al. Optimal dispatch model for micro integrated energy system considering multi-carrier energy generation characteristic of advanced adiabatic compressed air energy storage[J]. Power Generation Technology, 2020, 41(1): 41-49.
[16]
高琳婕. 火电厂集中式压缩空气系统设计探讨[J]. 能源研究与利用2016(1): 41-43.
GAO Linjie. Discussion on the design of centralized compressed air system in thermal power plants[J]. Energy Research & Utilization, 2016(1): 41-43.
[17]
罗晓莹. 大型钢铁企业中集中空压站的设置[J]. 冶金动力2016(11): 55-57.
LUO Xiaoying. The setup of concentrated compressed air station in large steel enterprises[J]. Metallurgical Power, 2016(11): 55-57.
[18]
石慧,王洋,马汀山,等. 多机组、多模式的热电联产厂级供热优化[J]. 热力发电2022, 51(1): 123-129.
SHI Hui, WANG Yang, MA Tingshan, et al. Plant-level heating optimization for multi-unit and multi-mode cogeneration[J]. Thermal Power Generation, 2022, 51(1): 123-129.
[19]
梁占伟,张磊,徐亚涛,等. 双机联调抽汽-高背压联合供热分析与优化[J]. 动力工程学报2020, 40(3): 247-255.
LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2020, 40(3): 247-255.
[20]
陈仲渊,董益华,叶圣策,等. 基于大型火电机组的压缩空气集中供应项目运行经济性分析[J]. 能源研究与管理2019(3): 94-97, 108.
CHEN Zhongyuan, DONG Yihua, YE Shengce, et al. Economical analysis on operation of compressed air centralized supply project based on large thermal power unit[J]. Energy Research and Management, 2019(3): 94-97, 108.
[21]
许平,于超,潘华引,等. 联合循环热电联产机组集中供压缩空气的应用[J]. 能源研究与利用2017(2): 40-42.
XU Ping, YU Chao, PAN Huayin, et al. Application of centralized compressed air supply for combined cycle cogeneration units[J]. Energy Research & Utilization, 2017(2): 40-42.
[22]
晁承龙,王洪玲,陈允梅. 汽轮机拖动压缩机技术运行总结[J]. 化肥工业2010, 37(6): 48-50.
CHAO Chenglong, WANG Hongling, CHEN Yunmei. Sum-up of operation of compressor driven by steam turbine[J]. Chemical Fertilizer Industry, 2010, 37(6): 48-50.
[23]
代黎. 工业园集中空压站选型设计[J]. 企业科技与发展2019(3): 57-58.

Funding

Science and Technology Project of State Grid Zhejiang Electric Power Co., Ltd.(5211DS22001K)
PDF(1164 KB)

Accesses

Citation

Detail

Sections
Recommended

/