Fault Diagnosis of Grid-Connected Microgrid Lines Based on AVMD and CNN

FU Linyao,LI Chunhua,WANG Benke,BAN Yongshuang

Distributed Energy ›› 2023, Vol. 8 ›› Issue (4) : 20-28.

PDF(4774 KB)
PDF(4774 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (4) : 20-28. DOI: 10.16513/j.2096-2185.DE.2308403
Basic Research

Fault Diagnosis of Grid-Connected Microgrid Lines Based on AVMD and CNN

Author information +
History +

Abstract

In order to improve the fault diagnosis accuracy of three-phase microgrid lines, a fault diagnosis and classification method based on adaptive variational mode decomposition (AVMD) and convolutional neural network (CNN) is proposed in this paper. Firstly, a microgrid radial structure model including wind, light and water system is established. AVMD is used to decompose the original fault signal into multiple modal components, where the parameters of variational mode decomposition (VMD) are optimized by aquila optimizer (AO). Only a few of the modes retain the fault signal information. Effective weighted peak relevance index (EWPR) is used to select the modal components, and the three modes that can best retain the fault information are selected as sensitive modes. The influence of noise and other irrelevant modes is eliminated, and CNN is used to diagnose and classify the circuit faults of the microgrid. 110 groups of fault data are generated for training and verification of neural network. The results show that 21 groups of data in 22 groups of verification data sets are classified correctly, and the fault diagnosis accuracy of this method reaches 95.46%.

Key words

adaptive variational mode decomposition (AVMD) / effective weighted peak relevance (EWPR) index / aquila optimizer (AO) / convolutional neural networks (CNN) / fault diagnosis classification

Cite this article

Download Citations
Linyao FU , Chunhua LI , Benke WANG , et al. Fault Diagnosis of Grid-Connected Microgrid Lines Based on AVMD and CNN[J]. Distributed Energy Resources. 2023, 8(4): 20-28 https://doi.org/10.16513/j.2096-2185.DE.2308403

References

[1]
余修勇,顾菊平,张新松,等. 多端柔性直流电网线路故障暂态等值电路及暂态特征分析[J]. 中国电机工程学报2022, 43(12): 1-13.
YU Xiuyong, GU Juping, ZHANG Xinsong, et al. Study on the transient equivalent circuits and the transient characteristics of multi-terminal flexible DC grids after line faults[J]. Pro-ceedings of the CSEE, 2022, 43(12): 1-13.
[2]
王晓东,王若瑾,刘颖明,等. 基于EMD-MDT的直流微电网线路故障检测[J]. 太阳能学报2022, 43(11): 522-528.
WANG Xiaodong, WANG Ruojin, LIU Yingming, et al. Line fault monitoring of DC microgrid based on EMD-MDT[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 522-528.
[3]
王蔓蓉. 基于鲁棒残差分析的直流微电网故障诊断研究[D]. 北京:北方工业大学,2022.
WANG Manrong. Based on robust residual analysis research on fault diagnosis of DC microgrid[D]. Beijing: North China University of Technology, 2022.
[4]
邵庆祝,谢民,王同文,等. 基于深度随机配置网络的电网故障诊断方法[J]. 控制工程2022, 29(12): 2213-2220.
SHAO Qingzhu, XIE Min, WANG Tongwen, et al. Diagnosis method of power grid fault based on deep stochastic configuration network[J]. Control Engineering of China, 2022, 29(12): 2213-2220.
[5]
杨彦杰,毛亚峰,唐圣学,等. 基于RTDS和神经网络的光储微电网线路故障诊断[J]. 可再生能源2018, 36(7): 1010-1016.
YANG Yanjie, MAO Yafeng, TANG Shengxue, et al. Photo-voltaic/battery micro-grid fault diagnosis based on RTDS and neural network[J]. Renewable Energy Resources, 2018, 36(7): 1010-1016.
[6]
焦卓,邵文权,关欣,等. 基于参数辨识的配电网相间永久性故障识别方法[J]. 分布式能源2022, 7(1): 37-45.
JIAO Zhuo, SHAO Wenquan, GUAN Xin, et al. Permanent fault identification method of distribution network based on parameter identification[J]. Distributed Energy, 2022, 7(1): 37-45.
[7]
张广新,岳科宇,张金波,等. 基于改进混合遗传算法的接地网故障诊断[J]. 机械设计与制造2022(3): 66-69, 75.
ZHANG Guangxin, YUE Keyu, ZHANG Jinbo, et al. Research on grounding grid fault diagnosis based on improved hybrid genetic algorithm[J]. Machinery Design & Manufacture, 2022(3): 66-69, 75.
[8]
李梦. 动态贝叶斯网络在电力通信网故障诊断中的应用[J]. 电力大数据2022, 25(5): 10-18.
LI Meng. Application of dynamic Bayesian network in fault diagnosis of power communication network[J]. Power Systems and Big Data, 2022, 25(5): 10-18.
[9]
王红君,李万丰,赵辉,等. 基于改进VMD-SSA的直流微电网故障检测技术研究[J]. 电工电能新技术2022, 41(2): 53-62.
WANG Hongjun, LI Wanfeng, ZHAO Hui, et al. Research on fault detection technology of DC microgrid based on improved VMD-SSA[J]. Advanced Technology of Electrical Engineering, 2022, 41(2): 53-62.
[10]
乔帅君. 基于多源信息融合的智能电网故障诊断方法研究[D]. 徐州:中国矿业大学,2022.
QIAO Shuaijun. Research on smart grid fault diagnosis method based on multi-source information fusion[D]. Xuzhou: China University of Mining and Technology, 2022.
[11]
王超,唐铭泽,李伟涛,等. 基于PSCAD/EMTDC三相光伏并网发电系统的研究[C]//2022年学术年会获奖论文集. 长春:吉林省电机工程学会,2022: 175-180.
[12]
郭健,王耿,耿兴宁,等. 基于PSCAD/EMTDC的光伏并网系统建模与仿真[C]//2022中国水利学术大会论文集(第四分册). 北京:中国水利学会,2022: 354-363.
[13]
李永琪. 基于参数优化VMD的滚动轴承故障诊断[D]. 兰州:兰州交通大学,2022.
LI Yongqi. Fault diagnosis of rolling bearing based on parameters optimized VMD[D]. Lanzhou: Lanzhou Jiaotong University, 2022.
[14]
ANJAIAH K, DASH P K, SAHANI M. Detection of faults and DG islanding in PV-wind DC ring bus microgrid by using optimized VMD based improved broad learning system[J]. ISA Transactions, 2022, 131: 533-551.
[15]
YOUNESS M, TURAJ A, ALIREZA S. Fault detection in distribution networks in presence of distributed generations using a data mining-driven wavelet transform[J]. IET Smart Grid, 2019, 2(2): 163-171.
[16]
吴昊,柴俊,安帅,等. SCA-VMD在变压器声信号降噪中的应用[J]. 发电技术2020, 41(2): 186-189.
WU Hao, CHAI Jun, AN Shuai, et al. Application of SCA-VMD in noise reduction of transformer sound signal[J]. Power Generation Technology, 2020, 41(2): 186-189.
[17]
蒋田勇,喻晨宇,黄可,等. 基于AO算法优化VMD参数联合小波阈值的桥梁信号去噪方法[J]. 中国公路学报2023, 36(6): 1-19.
JIANG Tianyong, YU Chenyu, HUANG Ke, et al. Bridge signal denoising method combined VMD parameters optimized by aquila optimizer with wavelet threshold[J]. China Journal of Highway and Transport, 2023, 36(6): 1-19.
[18]
王博,南新元. 基于AO-VMD和IAO-SVM的齿轮箱故障诊断[J]. 机械传动2023, 47(5): 143-149.
WANG Bo, NAN Xinyuan. Fault diagnosis of gearboxes based on AO-VMD and IAO-SVM[J]. Journal of Mechanical Transmission, 2023, 47(5): 143-149.
[19]
吴聪,李梦男,李琨. 基于数据划分和ODM-CNN的滚动轴承故障诊断[J]. 煤矿机械2023, 44(3): 183-186.
WU Cong, LI Mengnan, LI Kun. Fault diagnosis of rolling bearing based on data partition and ODM-CNN[J]. Coal Mine Machinery, 2023, 44(3): 183-186.
[20]
张玉敏,孙鹏凯,叶平峰,等. 基于CNN的配电网快速重构方法[J]. 智慧电力2022, 50(11): 112-118.
ZHANG Yumin, SUN Pengkai, YE Pingfeng, et al. Fast reconfiguration method of distribution network of based on convolutional neural network[J]. Smart Power, 2022, 50(11): 112-118.
[21]
杨金成,王永超,费守江,等. 基于Faster R-CNN的非侵入式负荷识别方法[J]. 分布式能源2022, 7(2): 26-33.
YANG Jincheng, WANG Yongchao, FEI Shoujiang, et al. Non-intrusive load identification method based on Faster R-CNN[J]. Distributed Energy, 2022, 7(2): 26-33.
[22]
杨茁蓬,高彦杰. 基于MODWT和ANN的微电网故障诊断[J]. 电力电子技术2022, 56(2): 19-22.
YANG Zhuopeng, GAO Yanjie. Fault diagnosis of microgrid based on MODWT and ANN[J]. Power Electronics, 2022, 56(2): 19-22.
[23]
戴连铭,李春华. 基于小波包能量熵与SVM的微电网故障诊断[J]. 计算机与数字工程2021, 49(10): 2126-2132.
DAI Lianmin, LI Chunhua. Fault diagnosis of microgrid based on wavelet packet energy entropy and SVM[J]. Computer & Digital Engineering, 2021, 49(10): 2126-2132.
[24]
钱小毅. 基于k近邻与规则挖掘的风电机组故障诊断研究[D]. 沈阳:沈阳工业大学,2020.
QIAN Xiaoyi. Research on fault diagnosis of wind turbine based on K-nearest neighbor and rule mining[D]. Shenyang: Shenyang University of Technology, 2020.

Funding

National Natural Science Foundation of China(51307074)
PDF(4774 KB)

Accesses

Citation

Detail

Sections
Recommended

/