PDF(1584 KB)
Structural Design and Heat Release Performance Study of Heat Storage Body With Intermediate Channels
XU Xun,GU Shuai,JU Guidong
Distributed Energy ›› 2023, Vol. 8 ›› Issue (4) : 40-45.
PDF(1584 KB)
PDF(1584 KB)
Structural Design and Heat Release Performance Study of Heat Storage Body With Intermediate Channels
Solid state heat storage technology has positive significance in consuming surplus electricity from the power grid, balancing peak and valley loads, and reducing environmental pollution by converting nonpeak electricity into thermal energy. In response to the problem of uneven heat extraction in existing solid heat storage devices, a new type of structural heat storage body is proposed, which designs an intermediate channel in the ventilation duct. The numerical model of the heat storage body was established by using Fluent. The temperature distribution and the velocity distribution in the ventilation duct of the new heat storage body when releasing heat are studied, and compared with the structure without intermediate connection. The research shows that the middle connected structure improves heat transfer efficiency and reduces heat accumulation phenomenon. Compared with the structure without intermediate connection, the average temperature of the new structure heat storage body is reduced by 37~68 ℃, with a maximum reduction of 22.8%, and the maximum temperature difference is reduced by 27~60 ℃, with a maximum reduction of 48.2%. The middle connected structure reduces the relative standard deviation of flow velocity at the center of the ventilation duct by 45.4%, improving the uniformity of the flow field. The middle connected structure along the vertical direction makes the temperature distribution of the heat storage body more uniform in the vertical direction, and does not deteriorate the temperature uniformity in the horizontal direction.
solid heat storage / structural design / numerical simulation / heat release performance / uniformity of flow field
| [1] |
吴娟,毕月虹,鲁一涵. 固体电蓄热技术研究现状及展望[J]. 电力需求侧管理,2022, 25(2): 65-71.
|
| [2] |
汉京晓,穆世慧. 典型蓄热技术在供热领域的应用分析[J]. 能源与节能,2019(4): 54-57.
|
| [3] |
尹少武,韩嘉维,石永乐,等. 非相变固体蓄热材料的蓄放热特性[J]. 化工进展,2020, 39(12): 5161-5169.
|
| [4] |
黄新晨,秦勤,于庆波. 固体电蓄热装置结构优化及蓄放热特性的模拟[J]. 材料与冶金学报,2021, 20(4): 290-296.
|
| [5] |
邢作霞,赵海川,陈雷,等. 基于耦合传热的电制热固体蓄热结构优化研究[J]. 中国电机工程学报,2019, 39(20): 5999-6007.
|
| [6] |
赵頔,王启民. 基于ANSYS分析的蓄热砖蓄热特性数值模拟及实验研究[J]. 沈阳工程学院学报(自然科学版), 2020, 16(2): 34-38.
|
| [7] |
胡自锋,徐耀祖,段振云,等. 新型蓄热体结构蓄热过程分析[J]. 储能科学与技术,2023, 12(1): 165-171.
|
| [8] |
徐耀祖,商向东,徐景久,等. 固体蓄热器蓄热过程分析与优化研究[J]. 热能动力工程,2022, 37(1): 150-156.
|
| [9] |
李晶晶,李永光,王治源,等. 固体蓄热装置圆形和椭圆形孔自然对流放热特性的研究[J]. 上海电力学院学报,2019, 35(6): 525-530.
|
| [10] |
叶祺贤,马昕霞. 固体蓄热装置放热特性的实验研究[J]. 上海电力学院学报,2021, 37(5): 422-427.
|
| [11] |
毕月虹,吴娟,鲁一涵. 固体蓄热砖孔道结构参数对蓄/释热性能的影响[J]. 北京工业大学学报,2022, 48(5): 543-551.
|
| [12] |
王媛哲. 电加热固体储能供热机组送风系统优化研究[D]. 张家口:河北建筑工程学院,2021.
|
| [13] |
张艳刚. 固体蓄热体组温升/温降一致性研究[D]. 石家庄:石家庄铁道大学,2020.
|
| [14] |
杨世铭,陶文铨. 传热学(第四版)[M]. 北京:高等教育出版社,2006.
|
| [15] |
李坦,靳世平,黄素逸,等. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电,2013, 42(11): 60-63, 92.
|
/
| 〈 |
|
〉 |