Day-Ahead Optimal Scheduling Considering the Flexibility of EV Charging and Discharging Modes

LIU Xiliu,CHEN Guanlin,WU Ning,XIAO Jing,WU Xiaorui,LI Xun,HUANG Zhifeng

Distributed Energy ›› 2023, Vol. 8 ›› Issue (4) : 46-54.

PDF(1644 KB)
PDF(1644 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (4) : 46-54. DOI: 10.16513/j.2096-2185.DE.2308406
Basic Research

Day-Ahead Optimal Scheduling Considering the Flexibility of EV Charging and Discharging Modes

Author information +
History +

Abstract

Under the aggregator management model, efficient utilization of the regulation capacity of large-scale electric vehicles (EV) can reduce system operating costs and facilitate the consumption of renewable energy resources (RES). At the same time, with the popularization of EV fast charging facilities, compared with slow charging, there may be more flexibility for EV to participate in grid auxiliary services under fast charging mode, but it is undoubted that the affordability of the power system is tested. To give full play to the advantages of resource flexibility on the demand side, this paper considers applying the fast charging concept to vehicle to grid (V2G) scenario i. e. considering the two-way fast power, and a day-ahead economic scheduling method for distribution networks considering the flexibility of EV charging and discharging modes is proposed. It includes two models: the EV aggregation model considering charging and discharging modes and the distribution network economic dispatch model. The results show that the strategy improves the flexibility of the dispatchable domain of EV and brings considerable benefits to the economic scheduling of the distribution network.

Key words

electric vehicle (EV) / dispatchable domain / day-ahead optimal scheduling / vehicle to grid (V2G) / fast charging

Cite this article

Download Citations
Xiliu LIU , Guanlin CHEN , Ning WU , et al . Day-Ahead Optimal Scheduling Considering the Flexibility of EV Charging and Discharging Modes[J]. Distributed Energy Resources. 2023, 8(4): 46-54 https://doi.org/10.16513/j.2096-2185.DE.2308406

References

[1]
交能网. 2022年我国新能源汽车销量达688.7万辆,市占率达25.6%[EB/OL]. (2023-01-12)[2023-02-25].
[2]
崔岩,胡泽春,段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术2022, 46(3): 981-994.
CUI Yan, HU Zechun, DUAN Xiaoyu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology, 2022, 46(3): 981-994.
[3]
刘明杭,田书,梁英达. 考虑电动汽车用户满意度的微电网双层多目标优化调度[J]. 分布式能源2022, 7(2): 18-25.
LIU Minghang, TIAN Shu, LIANG Yingda. Double-level multi-objective optimal scheduling of microgrid considering customer satisfaction of electric vehicles[J]. Distributed Energy, 2022, 7(2): 18-25.
[4]
傅鹏,杨凤玖,张禄郗. 电动汽车充、换电模式经济性研究[J]. 内蒙古电力技术2022, 40(2): 22-27.
FU Peng, YANG Fengjiu, ZHANG Luxi. Research on economics of electric vehicle charging and switching mode[J]. Inner Mongolia Electric Power, 2022, 40(2): 22-27.
[5]
贺瑜环,杨秀媛,陈麒宇,等. 电动汽车智能充放电控制与应用综述[J]. 发电技术2021, 42(2): 180-192.
HE Yuhuan, YANG Xiuyuan, CHEN Qiyu, et al. Review of intelligent charging and discharging control and application of electric vehicles[J]. Power Generation Technology, 2021, 42(2): 180-192.
[6]
蔡黎,张权文,代妮娜,等. 规模化电动汽车接入主动配电网研究进展综述[J]. 智慧电力2021, 49(6): 75-82.
CAI Li, ZHANG Quanwen, DAI Nina, et al. Review on research progress of large-scale electric vehicle access to active distribution network[J]. Smart Power, 2021, 49(6): 75-82.
[7]
CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2009, 25(1): 371-380.
[8]
CUI Y, HU Z, DUAN X. Optimal pricing of public electric vehicle charging stations considering operations of coupled transportation and power systems[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3278-3288.
[9]
陈中,刘艺,陈轩,等. 考虑移动储能特性的电动汽车充放电调度策略[J]. 电力系统自动化2020, 44(2): 77-85.
CHEN Zhong, LIU Yi, CHEN Xuan, et al. Charging and discharging dispatching strategy for electric vehicles considering characteristics of mobile energy storage[J]. Automation of Electric Power Systems, 2020, 44(2): 77-85.
[10]
朱旭,孙元章,杨博闻,等. 考虑不确定性与非完全理性用能行为的电动汽车集群可调度潜力计算方法[J]. 电力自动化设备2022, 42(10): 245-254.
ZHU Xu, SUN Yuanzhang, YANG Bowen, et al. Calculation method of EV cluster's schedulable potential capacity considering uncertainties and bounded rational energy consumption behaviors[J]. Electric Power Automation Equipment, 2022, 42(10): 245-254.
[11]
章攀钊,谢丽蓉,马瑞真,等. 考虑电动汽车集群可调度能力的多主体两阶段低碳优化运行策略[J]. 电网技术2022, 46(12): 4809-4825.
ZHANG Panzhao, XIE Lirong, MA Ruizhen, et al. Multi-player two-stage low carbon optimal operation strategy considering electric vehicle cluster schedulability[J]. Power System Technology, 2022, 46(12): 4809-4825.
[12]
ZHAO J, WANG J, XU Z, et al. Distribution network electric vehicle hosting capacity maximization: A chargeable region optimization model[J]. IEEE Transactions on Power Systems, 2017, 32(5): 4119-4130.
[13]
WANG L, KWON J, SCHULZ N, et al. Evaluation of aggregated EV flexibility with TSO-DSO coordination[J]. IEEE Transactions on Sustainable Energy, 2022, 13(4): 2304-2315.
[14]
张丙旭,许刚,张虓华. 考虑EV集群时序灵活性的分布式能源协同优化[J]. 电网技术2021, 45(3): 987-998.
ZHANG Bingxu, XU Gang, ZHANG Xiaohua. Distributed energy collaborative optimization considering temporal flexibility of EV cluster[J]. Power System Technology, 2021, 45(3): 987-998.
[15]
The Tesla Team. Introducing V3 supercharging[EB/OL]. (2019-03-06)[2023-02-26].
[16]
Model 3[EB/OL]. [2023-02-26].
[17]
YAN D, MA C, CHEN Y. Distributed coordination of charging stations considering aggregate EV power flexibility[J]. IEEE Transactions on Sustainable Energy, 2022, 14(1): 356-370.
[18]
XU Z, CALLAWAY D S, HU Z, et al. Hierarchical coordination of heterogeneous flexible loads[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4206-4216.
[19]
ZHANG H, HU Z, XU Z, et al. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model[J]. IEEE Transactions on Power Systems, 2016, 32(1): 784-794.
[20]
PERTL M, CARDUCCI F, TABONE M, et al. An equivalent time-variant storage model to harness EV flexibility: Forecast and aggregation[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4): 1899-1910.
[21]
WEN Y, HU Z, LIU L. Aggregate temporally coupled power flexibility of DERs considering distribution system security constraints[J]. IEEE Transactions on Power Systems, 2023, 38(4): 3884-3896.
[22]
YAO W, ZHAO J, WEN F, et al. A hierarchical decom-position approach for coordinated dispatch of plug-in electric vehicles[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2768-2778.
[23]
雷敏,华一飞,赵洪山,等. 计及电池寿命的电动汽车参与电网调峰策略[J]. 现代电力2020, 37(5): 510-517.
LEI Min, HUA Yifei, ZHAO Hongshan, et al. Strategy of electric vehicles participating peak load regulation of power grid considering battery life[J]. Modern Electric Power, 2020, 37(5): 510-517.
[24]
SANTOS A, MCGUCKIN N, NAKAMOTO H Y, et al. Summary of travel trends: 2009 national household travel survey[R]. United States: Federal Highway Administration, 2011.

Funding

Technology Project of Guangxi Power Grid Corporation(CG0400062001525841)
PDF(1644 KB)

Accesses

Citation

Detail

Sections
Recommended

/