Structural Parameter Optimization of Vertical Axis Wind Turbine Based on Response Surface Method

WANG Shibo,SONG Lei,XU Xianshen,YANG Zongxiao,SU Jianxin

Distributed Energy ›› 2023, Vol. 8 ›› Issue (5) : 10-18.

PDF(8483 KB)
PDF(8483 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (5) : 10-18. DOI: 10.16513/j.2096-2185.DE.2308502
Basic Research

Structural Parameter Optimization of Vertical Axis Wind Turbine Based on Response Surface Method

Author information +
History +

Abstract

In order to improve the utilization rate of wind energy of vertical axis wind rotor, the orthogonal analysis method combined with numerical simulation are usually used to optimize the structural parameters. However, the setting of factor values and level values for orthogonal analysis has a great influence on the optimization results. In this study, the structural parameters of vertical axis wind rotor are optimized by using response surface method (RSM) combined with genetic algorithm (GA). Firstly, the regression model of the wind rotor is constructed by central composite design (CCD) method, and the order of significance of the influence of structural factors on the power coefficient was studied by computational fluid dynamics (CFD) method and analysis of variance. Then, the structural parameters are optimized based on GA and compared with the traditional orthogonal analysis method. The results show that the maximum power coefficient of the wind rotor obtained by the RSM is 0.193, which is 3.6% higher than the results of orthogonal analysis. The optimal parameter values obtained by the RSM can be outside the range of the given factor values and level values. Therefore, the optimal solution obtained by the RSM is more accurate and has better adaptability to the optimization of the structural parameters of the vertical axis wind rotor.

Key words

response surface method / vertical axis wind rotor / structural parameter optimization / orthogonal analysis / numerical simulation

Cite this article

Download Citations
Shibo WANG , Lei SONG , Xianshen XU , et al . Structural Parameter Optimization of Vertical Axis Wind Turbine Based on Response Surface Method[J]. Distributed Energy Resources. 2023, 8(5): 10-18 https://doi.org/10.16513/j.2096-2185.DE.2308502

References

[1]
陈昊,戴孟祎,韩兆龙,等. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报2023, 57(6):642-652.
CHEN Hao, DAI Mengyi, HAN Zhaolong, et al. Aerodynamic performance optimization of MW-Level large vertical axis wind turbine with trailing edge flaps[J]. Journal of Shanghai Jiaotong University, 2023, 57(6):642-652.
[2]
杨仁杰,李宇星,吴绍云,等. 含风力发电的互联电力系统自动发电控制优化方法研究[J]. 分布式能源2020, 5(6):18-26.
YANG Renjie, LI Yuxing, WU Shaoyun, et al. Research on automatic generation control optimization method of interconnected power system with wind power generation[J]. Distributed Energy, 2020, 5(6):18-26.
[3]
汪泉,甘笛,杨书益,等. 考虑攻角范围的垂直轴风力机叶片翼型优化设计[J]. 农业工程学报2020, 36(24):38-45.
WANG Quan, GAN Di, YANG Shuyi, et al. Optimized design of H-VAWT blade airfoils profile considering range of angle of attack[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24):38-45.
[4]
戴孟祎,张志豪,涂佳黄,等. 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报2022, 56(12):1619-1629.
DAI Mengyi, ZHANG Zhihao, TU Jiahuang, et al. Aerodynamic effect of deflection angle of trailing edge flap on vertical axis wind turbine with different airfoils[J]. Journal of Shanghai Jiaotong University, 2022, 56(12):1619-1629.
[5]
张唯,叶舟,李春,等. 风透镜优化构型对垂直轴风力机气动性能研究[J]. 太阳能学报2023, 44(3):39-45.
ZHANG Wei, YE Zhou, LI Chun, et al. Optimal configuration of wind lens for vertical axis wind turbine aerodynamic performance research[J]. Acta Energiae Solaris Sinica, 2023, 44(3):39-45.
[6]
LAJNEF M, MOSBAHI M, CHOUAIBI Y, et al. Performance improvement in a helical Savonius wind rotor[J]. Arabian Journal Science and Engineering, 2020, 45(11):9305-9323.
[7]
MARINI-KRAGIC I, VUINA D, MILAS Z. Computational analysis of Savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization[J]. Journal of Cleaner Production, 2020, 262:121310.
[8]
SAEED H A H, ELMEKAWY A M N, KASSAB S Z. Numerical study of improving Savonius turbine power coefficient by various blade shapes[J]. Alexandria Engineering Journal, 2019, 58(2):429-441.
[9]
SAAD A S, EL-SHARKAWY II, OOKAWARA S, et al. Performance enhancement of twisted-bladed Savonius vertical axis wind turbines[J]. Energy Conversion and Management, 2020, 209:112673.
[10]
WILBERFORCE T, ALASWAD A. Performance analysis of a vertical axis wind turbine using computational fluid dynamics[J]. Energy, 2023, 263:125892.
[11]
ZEMAMOU M, TOUMI A, MRIGUA K, et al. A novel blade design for Savonius wind turbine based on polynomial bezier curves for aerodynamic performance enhancement[J]. International Journal of Green Energy, 2020, 17(11):652-665.
[12]
DOL S S, KHAMIS A, ABDALLFTAH M T, et al. CFD analysis of vertical axis wind turbine with winglets[J]. Renewable Energy Research and Applications, 2022, 3(1):51-59.
[13]
许小明,袁志强,李庆煜,等. 基于CFD与风洞实验的缩比风力机三维效应修正公式效果分析[J]. 中国电力2020, 53(2):92-98.
XU Xiaoming, YUAN Zhiqiang, LI Qingyu, et al. Effectiveness analysis of three-dimensional effect correction formulas based on the CFD and wind tunnel experiment of the scaled wind turbines[J]. Electric Power, 2020, 53(2):92-98.
[14]
何娇,金鑫,谢双义,等. 基于不同CFD建模复杂度的垂直轴风力机气动性能分析[J]. 太阳能学报2021, 42(12):150-156.
HE Jiao, JIN Xin, XIE Shuangyi, et al. Aerodynamic performance analysis of vertical axis wind turbine based on different CFD modeling complexities[J]. Acta Energiae Solaris Sinica, 2021, 42(12):150-156.
[15]
张立军,顾嘉伟,朱怀宝,等. 垂直轴风力机尾缘开裂襟翼气动性能及其偏转角调节规律[J]. 中南大学学报(自然科学版), 2020, 51(4):931-943.
ZHANG Lijun, GU Jiawei, ZHU Huaibao, et al. Aerodynamic performance on the trailing edge split flap and regulation law of deflection angle of VAWT[J]. Journal of Central South University (Science and Technology), 2020, 51(4):931-943.
[16]
韩成荣,陈永艳,田瑞,等. 布置粗糙带的垂直轴风力机输出特性研究[J]. 可再生能源2020, 38(12):1615-1620.
HAN Chengrong, CHEN Yongyan, TIAN Rui, et al. Study on the output characteristics of vertical axis wind turbine with rough belt[J]. Renewable Energy Resources, 2020, 38(12):1615-1620.
[17]
KAYA A F, ACIR A. Enhancing the aerodynamic performance of a Savonius wind turbine using Taguchi optimization method[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2022, 44(2):5610-5626.
[18]
QAISSI K, ELSAYED O, FAQIR M, et al. Aerodynamic optimization of trailing-edge-serrations for a wind turbine blade using Taguchi modified additive model[J]. Energies, 2023, 16(3):1099.
[19]
MAZLAN M Z, ZAWAWI F M, TAHZIB T, et al. Performance analysis of highway wind turbine enhanced with wind guide vanes using the taguchi method[J]. CFD Letters, 2021, 13(3):25-42.
[20]
PENG H Y, ZHONG B W, HU G, et al. Optimization analysis of straight-bladed vertical axis wind turbines in turbulent environments by wind tunnel testing[J]. Energy Conversion and Management, 2022, 257:115411.
[21]
SARKAR D, SHUKLA S, ALOM N, et al. Investigation of a newly developed slotted bladed darrieus vertical axis wind turbine: A numerical and response surface methodology analysis[J]. Journal of Energy Resources Technology, 2023, 145(5):051302.
[22]
PAKZAD S, PEDRAMMEHR S, HEJAZIAN M. A study on the beech wood machining parameters optimization using response surface methodology[J]. Axioms, 2023, 12(1):39.
[23]
王鹏,包道日娜,吴胜胜,等. 基于静力学分析的新型变桨风力机关键齿轮参数优化[J]. 太阳能学报2023, 44(7):456-462.
WANG Peng, BAO Daorina, WU Shengsheng, et al. Optimization of key gear parameters of new varable pitch wind turbine based on static analysis[J]. Acta Energiae Solaris Sinica, 2023, 44(7):456-462.
[24]
唐鹏,党新安,杨立军,等. 响应面法优化芹菜纤维植物空心胶囊的制备工艺[J]. 中国食品学报2021, 21(3):107-117.
TANG Peng, DANG Xinan, YANG Lijun, et al. Optimization of preparation technology of celery fibre plant hollow capsule by response surface methodology[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3):107-117.
[25]
孔祥韶,杨豹,周沪,等. 基于响应面法的纤维金属层合板抗弹性能优化设计[J]. 爆炸与冲击2022, 42(4):84-96.
KONG Xiangshao, YANG Bao, ZHOU Hu, et al. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method[J]. Explosion and shock waves, 2022, 42(4):84-96.
[26]
胡晶,翟九童,张心明,等. 基于响应面法的双级串联轴承结构优化设计[J]. 兵工学报2022, 43(3):694-703.
HU Jing, ZHAI Jiutong, ZHANG Xinming, et al. Structural optimization design of double-decker ball bearing based on response surface methodology[J]. Acta Armamentarii, 2022, 43(3):694-703.
[27]
DIREN D D, OZSOY N, OZSOY M. Optimization of cutting parameters and result predictions with response surface metho-dology, individual and ensemble machine learning algorithms in end milling of AISI 321[J]. Arabian Journal for Science and Engineering, 2023,
[28]
张坤,于慎波,翟凤晨,等. 大容量外转子永磁风力发电机组转子结构的轻量化设计[J]. 机电工程2020, 37(12):1547-1552.
ZHANG Kun, YU Shenbo, ZHAI Fengchen, et al. Lightweight design of rotor structure of large capacity outer rotor permanent magnet wind generator[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(12):1547-1552.
[29]
马祺敏,王加浩,张洋,等. 风力机翼型尾缘三角襟翼气动性能的参数化研究[J]. 工程热物理学报2022, 43(6):1493-1502.
MA Qimin, WANG Jiahao, ZHANG Yang, et al. Parameterized research on triangular flaps of wind turbine airfoil trailing edge[J]. Journal of Engineering Thermophysics, 2022, 43(6):1493-1502.
[30]
REZAEIHA A, MONTAZERI H, BLOCKEN B. On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines[J]. Energy, 2019, 180:838-857.
[31]
贺德幸,王孝东,刘杰,等. 基于SST k-ω湍流模型的提升竖井活塞风效应研究[J]. 有色金属工程2022, 12(8):149-158.
HE Dexing, WANG Xiaodong, LIU Jie, et al. Study on piston wind effect of lifting shaft based on SST k-ω turbulence model[J]. Nonferrous metals engineering, 2022, 12(8):149-158.
[32]
SALEHI F, GOHARPOUR K, KAMRAN H R. Optimization of sonication time, edible coating concentration, and osmotic solution degrees Brix for the dehydration process of quince slices using response surface methodology[J]. Food Science & Nutrition, 2023, 11(7):3959-3975.
[33]
张强,缪维跑,刘青松,等. 基于多目标遗传算法的垂直轴风力机专用翼型优化设计[J]. 太阳能学报2023, 44(4):9-16.
ZHANG Qiang, MIAO Weipao, LIU Qingsong, et al. Optimal design of vertical axis wind turbine special airfoil based on multi-objective genetic algorithm[J]. Acta Energiae Solaris Sinica, 2023, 44(4):9-16.
[34]
常国锋. 基于多目标遗传算法的多配置风电机组控制[J]. 科学技术与工程2022, 22(1):220-227.
CHANG Guofeng. Multiple configuration wind turbine control based on multi-objective genetic algorithm[J]. Science technology and engineering, 2022, 22(1):220-227.

Funding

National Natural Science Foundation of China(51775171)
PDF(8483 KB)

Accesses

Citation

Detail

Sections
Recommended

/