Analysis of Operating Parameters and Energy Consumption of Chemical Absorption Carbon Dioxide Capture System in Natural Gas Power Plants

WANG Xu,YANG Hao,WANG Mancang,LI Yanfeng,TIAN Yu,WANG Chong,JIN Xuliang,HUANG Zhongyuan,YIN Aiming

Distributed Energy ›› 2023, Vol. 8 ›› Issue (5) : 69-76.

PDF(1322 KB)
PDF(1322 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (5) : 69-76. DOI: 10.16513/j.2096-2185.DE.2308509
Application Technology

Analysis of Operating Parameters and Energy Consumption of Chemical Absorption Carbon Dioxide Capture System in Natural Gas Power Plants

Author information +
History +

Abstract

In order to clarify the correlation mechanism between carbon dioxide capture operation parameters and system energy use in gas-fired power plants, and reduce the energy consumption and cost per unit of carbon dioxide capture, the carbon capture and storage (CCS) demonstration device of a 450 MW gas-fired power plant was taken as the research object, and the main process of CCS process was introduced. The properties of MEA and AMP-PZ absorbers were compared and analyzed by systematic test of absorber and regenerator. The effects of flue gas temperature, liquid gas ratio of absorber, desorption pressure and carbon dioxide capture rate on energy consumption were investigated. The results show that under the operating conditions of MEA and AMP-PZ with flue gas temperature of 38 ℃, liquid-gas ratio of 0.54 and 0.42, and regeneration temperature of 112 ℃, the regenerative energy consumption is 4.49 and 4.24 MJ/kg, respectively.

Key words

natural gas power plant / carbon capture and storage (CCS) / energy consumption

Cite this article

Download Citations
Xu WANG , Hao YANG , Mancang WANG , et al . Analysis of Operating Parameters and Energy Consumption of Chemical Absorption Carbon Dioxide Capture System in Natural Gas Power Plants[J]. Distributed Energy Resources. 2023, 8(5): 69-76 https://doi.org/10.16513/j.2096-2185.DE.2308509

References

[1]
李政,陈思源,董文娟,等. 现实可行且成本可负担的中国电力低碳转型路径[J]. 洁净煤技术2021, 27(2):1-7.
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Feasible and affordable pathways to low-carbon power transition in China[J]. Clean Coal Technology, 2021, 27(2):1-7.
[2]
薛立林,肖岚. 对制定中国能源低碳“十四五”及中长期发展规划的认识和建议[J]. 国际石油经济2020, 28(12):1-10.
XUE Lilin, XIAO Lan. Understanding and suggestions on formulating low carbon energy strategy in China's 14th Five Year period and medium-to-long term development plan[J]. International Petroleum Economics, 2020, 28(12):1-10.
[3]
王焕君,刘牛,郑棹方,等. 直接空气捕碳材料研究进展[J]. 发电技术2022, 43(4):533-543.
WANG Huanjun, LIU Niu, ZHENG Zhaofang, et al. Research progress of materials for direct capture of CO2 from ambient air[J]. Power Generation Technology, 2022, 43(4):533-543.
[4]
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力2021, 49(5):1-6.
TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5):1-6.
[5]
IEA. World energy outlook 2015[R]. International Energy Agency: Paris, France.
[6]
袁家海,徐燕,雷祺. 电力行业煤炭消费总量控制方案和政策研究[J]. 中国能源2015, 37(3):11-17.
YUAN Jiahai, XU Yan, LEI Qi. Research on total coal consumption control scheme and policy in power industry[J]. Energy of China 2015, 37(3):11-17.
[7]
Energy Transitions Commission. China 2050: A fully developed rich zero-carbon economy[R]. Beijing: ETC, 2019.
[8]
侯建朝,谭忠富. 电力生产CO2排放变化影响因素分解[J]. 中国电力2011, 44(11):39-42.
HOU Jianzhao, TAN Zhongfu. The factor decomposition of CO2 emission changes in electricity production in China[J]. Electric Power, 2011, 44(11):39-42.
[9]
王常凯,谢宏佐. 中国电力碳排放动态特征及影响因素研究[J]. 中国人口资源与环境2015, 25(4):21-27.
WANG Changkai, XIE Hongzuo. Analysis on dynamic characteristics and influencing factors of carbon emissions from electricity in China[J]. China Population Resources and Environment, 2015, 25(4):21-27.
[8]
张蕾,邢大勇,芦玉铎,等. 新型吸收剂捕集燃气电厂烟气中二氧化碳的中试研究[J]. 分布式能源2023, 8(4):55-62.
ZHANG Lei, XING Dayong, LU Yuduo, et al. Pilot study on a new absorbent captures carbon dioxide in flue gas of gas-fired power plant[J]. Distributed Energy, 2023, 8(4):55-62.
[10]
DUAN Liqiang, ZHAO Mingde, YANG Yongping. Integration and optimization study on the coal-fired power plant with CO2 capture using MEA[J]. Energy, 2012, 45(1):107-116.
[11]
ARONU U, GONDAL S, HESSEN E, et al. Solubility of CO2 in 15, 30, 45, and 60 mass% MEA from 40 to 120 ℃ and model representation using the extended UNIQUAC framework[J]. Chemical Engineering Science. 2011, 66(24),6393-6406.
[12]
NWAOHA C, IDEM R, SUPAP T, et al. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-Amino-2-Methyl-1-Propanol(AMP), Piperazine (PZ) and Monoe-thanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture[J]. Chemical Engineering Science. 2017, 170(12):36-25.
[13]
ARANTO Y, JANSEN J, PEARSONET P, et al. Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal-fired power station[J]. International Journal of Greenhouse Gas Control. 2014, 20:189-195.
[14]
郭东方,刘练波,王金意,等. 燃气烟气1000 t/a CO2捕集中试试验研究[J]. 中国电机工程学报2014, 34(23):3849-3855.
GUO Dongfang, LIU Lianbo, WANG Jinyi, et al. Pilot-scale experimental study of 1000 t/a CO2 cpture from flue gas of natural gas power station[J]. Proceedings of the CSEE, 2014, 34(23):3849-3855.
[15]
黄忠源,李进,安洪光,等. 燃烧后CO2捕获与燃气-蒸汽联合循环机组热力能源整合研究[J]. 中国电机工程学报2017, 37(9):2644-2651.
HUANG Zhongyuan, LI Jin, AN Hongguang, et al. Study on the thermal energy integration of post-combustion CO2 capture in natural gas combined cycle plant[J]. Proceedings of the CSEE, 2017, 37(9):2644-2651.
[16]
安洪光,佟义英,赵莹,等. 燃气电厂烟气CO2捕集工艺实践[J]. 中国电力2016, 49(9):175-180.
AN Hongguang, TONG Yiying, ZHAO Ying, et al. Practice of CO2 absorption process in natural gas power plant[J]. Eletric Power, 2016, 49(9):175-180.

Funding

Science and Technology Project of China Datang Group Corporation Ltd.(DTJJ-2021-10029)
PDF(1322 KB)

Accesses

Citation

Detail

Sections
Recommended

/