Subsynchronous Current Dual Channel Additional Damping Suppression Subsynchronous Oscillation Strategy and Impedance Model Analysis

LI Bohao,GUO Kunli,LYU Jiajun,CAI Weizheng,BAI Yang,REN Beilei,ZHU Tinghua

Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 1-10.

PDF(19999 KB)
PDF(19999 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 1-10. DOI: 10.16513/j.2096-2185.DE.2308601
Basic Research

Subsynchronous Current Dual Channel Additional Damping Suppression Subsynchronous Oscillation Strategy and Impedance Model Analysis

Author information +
History +

Abstract

Aiming at the phenomenon of subsynchronous oscillation (SSO) caused by direct drive wind turbines under weak power grid, a dual-channel additional damping strategy based on subsynchronous current is proposed for suppression. Firstly, the influence of weak power grid on SSO is verified, and secondly, combined with the direct drive fan connected to the weak power grid to extract subsynchronous current from the system to analyze the suppression mechanism, the structure of additional damping controller and its parameters are designed. Then, an impedance model considering the frequency coupling additional damping control link is established and its stability is verified. Finally, the proposed strategy is simulated and compared with undamped control and traditional single-channel damped control. The results show that compared with undamping control and single-channel damping control, the proposed method reduces the SSO fluctuation range, suppresses SSO phenomenon more effectively and has better adaptability.

Key words

weak grids / direct drive wind turbines / subsynchronous oscillation / additional damping control

Cite this article

Download Citations
Bohao LI , Kunli GUO , Jiajun LYU , et al . Subsynchronous Current Dual Channel Additional Damping Suppression Subsynchronous Oscillation Strategy and Impedance Model Analysis[J]. Distributed Energy Resources. 2023, 8(6): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2308601

References

[1]
谢小荣,李浩志. 电力系统振荡研究进展[J]. 科学通报2020, 65(12): 1119-1129.
XIE Xiaorong, LI Haozhi. Research progress of power system oscillation[J]. Chinese Science Bulletin, 2020, 65(12): 1119-1129.
[2]
康佳乐,余浩,段瑶,等. 风电场次同步振荡等值建模方法研究[J]. 发电技术2022, 43(6): 880-891.
KANG Jiale, YU Hao, DUAN Yao, et al. Research on synchronous oscillation equivalence modeling method of wind farm[J]. Power Generation Technology, 2022, 43(6): 880-891.
[3]
LIU H, BI T, CHANG X, et al. Impacts of subsynchronous and supersynchronous frequency coponents on synchrophasor measurements[J]. Journal of Modern Power Systems & Clean Energy, 2016, 4(3): 362-369.
[4]
赵伟哲,崔成,严干贵,等. 用于次同步振荡分析的直驱风电场等值模型[J]. 智慧电力2022, 50(2): 22-28.
ZHAO Weizhe, CUI Cheng, YAN Gangui, et al. Equivalent model of d-pmsg-based wind farm for subsynchronous oscillation analysis[J]. Smart Power, 2022, 50(2): 22-28.
[5]
孙永辉,王悦臻. 特高压配套风电次同步谐振问题分析及抑制措施[J]. 内蒙古电力技术2021, 39(5): 44-49.
SUN Yonghui, WANG Yuezhen. Analysis of sub-synchronous resonance of UHV wind power and its suppression measures[J]. Inner Mongolia Electric Power, 2021, 39(5): 44-49.
[6]
秦浩宇,苏勋文,杨福宝,等. 双馈风机特征值分析的建模与模态分析[J]. 分布式能源2019, 4(3): 21-27.
QIN Haoyu, SU Xunwen, YANG Fubao, et al. Modeling and modal analysis of eigenvalue analysis of doubly-fed fans[J]. Distributed Energy, 2019, 4(3): 21-27.
[7]
杨博闻,谢小荣,严干贵,等. 风电并网系统次同步振荡分析方法综述[J]. 电力建设2019, 40(10): 56-63.
YANG Bowen, XIE Xiaorong, YAN Gangui, et al. Review of subsynchronous oscillation analysis methods of wind power grid-connected system[J]. Electric Power Construction, 2019, 40(10): 56-63.
[8]
姜齐荣,王玉芝. 电力电子设备高占比电力系统电磁振荡分析与抑制综述[J]. 中国电机工程学报2020, 40(22): 7185-7201.
JIANG Qirong, WANG Yuzhi. Review of electromagnetic oscillation analysis and suppression of power electronic equipment with high proportion of power electronic equipment[J]. Proceedings of the CSEE, 2020, 40(22): 7185-7201.
[9]
SUN J. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26 (11): 3075-3078.
[10]
张天翼,王海风. 风电并入弱交流系统引发次同步振荡的研究方法综述[J]. 电力系统保护与控制2021, 49(16): 177-187.
ZHANG Tianyi, WANG Haifeng. Review of research methods of subsynchronous oscillation caused by wind power integration into weak AC system[J]. Power System Protection and Control, 2021, 49 (16): 177-187.
[11]
CESPEDES M, SUN J. Impedance modeling and analysis of grid-connected voltage-source converters[J]. IEEE Transactions on Power Electronics, 2013, 29(3): 1254-1261.
[12]
于永军,王利超,张明远,等. 基于阻抗特性多项式拟合的直驱风电机组次同步振荡稳定判据[J]. 发电技术2020, 41(4): 429-436.
YU Yongjun, WANG Lichao, ZHANG Mingyuan, et al. Subsynchronous oscillation stability criterion for direct drive wind turbines based on polynomial fitting with impedance characteristics[J]. Power Generation Technology, 2020, 41(4): 429-436.
[13]
肖仕武,徐立光. 基于频率耦合阻抗的直驱风电机组次同步振荡关键影响因素分析及抑制措施[J]. 电网技术2023, 47(4): 1641-1654.
XIAO Shiwu, XU Liguang. Analysis of key influencing factors and suppression measures of subsynchronous oscillation of direct drive wind turbine based on frequency coupling impedance[J]. Power System Technology, 2023, 47(4): 1641-1654.
[14]
郑国强. 考虑频率耦合特性的并网逆变器阻抗特性与稳定性研究[D]. 兰州:兰州理工大学,2021.
ZHENG Guoqiang. Research on impedance characteristics and stability of grid-connected inverter considering frequency coupling characteristics[D]. Lanzhou: Lanzhou University of Technology, 2021.
[15]
李博浩,郭昆丽,吕家君,等. 弱电网下改进LADRC抑制直驱风机次同步振荡研究[J]. 中国电力2023, 56(4): 56-67.
LI Bohao, GUO Kunli, LV Jiajun, et al. Research on improved LADRC suppression of subsynchronous oscillation of direct drive wind turbines under weak power grid[J]. Electric Power, 2023, 56(4): 56-67.
[16]
谢小荣,刘华坤,贺静波,等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报2016, 36(9): 2366-2372.
XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Mechanism and characteristic analysis of subsynchronous oscillation caused by interaction between wind farm and AC power grid of direct drive fan[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372.
[17]
蔡维正,郭昆丽,刘璐雨,等. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力2022, 55(4): 175-184.
CAI Weizheng, GUO Kunli, LIU Luyu, et al. Synchronous oscillation suppression strategy of direct drive fan based on first-order LADRC control[J]. Electric Power, 2022, 55(4): 175-184.
[18]
COMMITTEE D. IEEE guide for planning DC links terminating at AC locations having low short circuit capacities[J]. IEEE Standards, 1997: 1204-1997.
[19]
易友川. 直驱风电场接入弱交流电网的次同步振荡分析及抑制策略研究[D]. 保定:华北电力大学,2021.
YI Youchuan. Subsynchronous oscillation analysis and suppression strategy of direct drive wind farm connected to weak AC power grid[D]. Baoding: North China Electric Power University, 2021.
[20]
VIETO I, SUN J. Sequence impedance modeling and converter-grid resonance analysis considering DC bus dynamics and mirrored harmonics[C]//Proceedings of 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL). Padua, Italy: IEEE, 2018: 1-8.
[21]
高本锋,易友川,邵冰冰,等. 基于自抗扰控制的直驱风电场次同步振荡抑制策略[J]. 电力自动化设备2020, 40(9): 148-157.
GAO Benfeng, YI Youchuan, SHAO Bingbing, et al. Synchronous oscillation suppression strategy of direct drive wind farm field based on disturbance rejection control[J]. Electric Power Automation Equipment, 2020, 40(9): 148-157.
[22]
年珩,徐韵扬,陈亮,等. 并网逆变器频率耦合特性建模及系统稳定性分析[J]. 中国电机工程学报2019, 39(5): 1421-1432.
NIAN Heng, XU Yunyang, CHEN Liang, et al. Modeling of frequency coupling characteristics of grid-connected inverter and system stability analysis[J]. Proceedings of the CSEE, 2019, 39(5): 1421-1432.
[23]
武相强,王赟程,陈新,等. 考虑频率耦合效应的三相并网逆变器序阻抗模型及其交互稳定性研究[J]. 中国电机工程学报2020, 40(5): 1605-1617.
WU Xiangqiang, WANG Yuncheng, CHEN Xin, et al. Sequence impedance model of three-phase grid-connected inverter considering frequency coupling effect and its interaction stability [J]. Proceedings of the CSEE, 2020, 40(5): 1605-1617.

Funding

China National Textile and Apparel Council Science and Technology Guiding Program(2022086)
Shaanxi Provincial Department of Education Scientific Research Program Project(21JK0655)
PDF(19999 KB)

Accesses

Citation

Detail

Sections
Recommended

/