An Overview of the Application of Artificial Intelligence in Power Systems

CHEN Yufei,ZHAO Qi,HE Yongjun,TIAN Xiaopeng,LI Wufeng

Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 49-57.

PDF(10209 KB)
PDF(10209 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 49-57. DOI: 10.16513/j.2096-2185.DE.2308607
Application Technology

An Overview of the Application of Artificial Intelligence in Power Systems

Author information +
History +

Abstract

The artificial intelligence(AI) technology is an important driving force for promoting industrial development and technological innovation. However, the application of AI in power systems also faces many challenges because of insufficient accumulation of technology, inadequate technical standards, lack of high-dimensional and high-quality data, defects in deep neural network algorithms and so on. In this paper, the main technologies of AI and its application status in the power system have been sorted out, the technical application system based on the basic framework of basic equipment layer, data management layer, algorithm training layer, and application scenario layer have been analyzed. The technical measures that should be taken for the application of AI in power systems have been proposed. Finally, the prospects for the deep integration of the new generation of AI with power systems and the implementation of smart energy systems are presented.

Key words

artificial intelligence / power system / technical architecture / smart energy

Cite this article

Download Citations
Yufei CHEN , Qi ZHAO , Yongjun HE , et al . An Overview of the Application of Artificial Intelligence in Power Systems[J]. Distributed Energy Resources. 2023, 8(6): 49-57 https://doi.org/10.16513/j.2096-2185.DE.2308607

References

[1]
潘云鹤. 新一代人工智能发展白皮书(2017)[R]. 北京:中国电子学会,2017.
[2]
汤涌,姚伟,王宏志,等. 电网仿真分析与决策的人工智能方法[J]. 中国电机工程学报2022, 42(15): 5384-5406.
TANG Yong, YAO Wei, WANG Hongzhi, et al. Artificial intelligence techniques for power grid simulation analysis and decision making[J]. Proceedings of the CSEE, 2022, 42(15): 5384-5406.
[3]
赵晋泉,夏雪,徐春雷,等. 新一代人工智能技术在电力系统调度运行中的应用评述[J]. 电力系统自动化2020, 44(24): 1-10.
ZHAO Jinquan, XIA Xue, XU Chunlei, et al. Review on application of new generation artificial intelligence technology in power system dispatching and operation[J]. Automation of Electric Power Systems, 2020, 44(24): 1-10.
[4]
杨博,陈义军,姚伟,等. 基于新一代人工智能技术的电力系统稳定评估与决策综述[J]. 电力系统自动化2022, 46(22): 200-223.
YANG Bo, CHEN Yijun, YAO Wei, et al. Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology[J]. Automation of Electric Power Systems, 2022, 46(22): 200-223.
[5]
韩富佳,王晓辉,乔骥,等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报2023, 43(22): 8569-8592.
HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8592.
[6]
张晓华,冯长有,王永明,等. 电网调控机器人设计思路[J]. 电力系统自动化2019, 43(13): 1-8.
ZHANG Xiaohua, FENG Zhangyou, WANG Yongming, et al. Design ideas of robotic dispatcher for power grid[J]. Automation of Electric Power Systems, 2019, 43(13): 1-8.
[7]
范士雄,李立新,王松岩,等. 人工智能技术在电网调控中的应用研究[J]. 电网技术2020, 44(2): 401-411.
FAN Shixiong, LI Lixin, WANG Songyan, et al. Application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J]. Power System Technology, 2020, 44(2): 401-411.
[8]
吴倩红,韩蓓,冯琳,等. “人工智能+”时代下的智能电网预测分析[J]. 上海交通大学学报2018, 52(10): 1206-1219, 1266.
WU Qianhong, HAN Bei, FENG Lin, et al. “AI+” based smart grid prediction analysis[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1206-1219, 1266.
[9]
PHADKE A G, BI T. Phasor measurement units, WAMS, and their applications in protection and control of power systems[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(4): 619-629.
[10]
陈国平,董昱,梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报2020, 40(17): 5493-5506.
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[11]
陈国平,梁志峰,董昱. 基于能源转型的中国特色电力市场建设的分析与思考[J]. 中国电机工程学报2020, 40(2): 369-379.
CHEN Guoping, LIANG Zhifeng, DONG Yu. Analysis and reflection on the marketization construction of electric power with Chinese characteristics based on energy transformation[J]. Proceedings of the CSEE, 2020, 40(2): 369-379.
[12]
鞠平,周孝信,陈维江,等. “智能电网+”研究综述[J]. 电力自动化设备2018, 38(5): 2-11.
JU Ping, ZHOU Xiaoxin, CHEN Weijiang, et al. “Smart Grid Plus” research overview[J]. Electric Power Automation Equipment, 2018, 38(5): 2-11.
[13]
WU H, SHAHIDEPOUR M, ALABDULWAHAB A, et al. A game theoretic approach to risk-based optimal bidding strategies for electric vehicle aggregators in electricity markets with variable wind energy resources[J]. IEEE Transactions on Sustainable Energy, 2017, 7(1): 374-385.
[14]
XU Z, HU Z, SONG Y, et al. Risk-Averse optimal bidding strategy for demand-side resource aggregators in day-ahead electricity markets under uncertainty[J]. IEEE Transactions on Smart Grid, 2017, 8(1): 96-105.
[15]
姜齐荣,王玉芝. 电力电子设备高占比电力系统电磁振荡分析与抑制综述[J]. 中国电机工程学报2020, 40(22): 7185-7201.
JIANG Qirong, WANG Yuzhi. Overview of the analysis and mitigation methods of electromagnetic oscillations in power systems with high proportion of power electronic equipment[J]. Proceedings of the CSEE, 2020, 40(22): 7185-7201.
[16]
李明节,陶洪铸,许洪强,等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术2020, 44(2): 393-400.
LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44(2): 393-400.
[17]
乔骥,王新迎,闵睿,等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报2020, 40(18): 5837-5849.
QIAO Ji, WANG Xinying, MIN Rui, et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE, 2020, 40(18): 5837-5849.
[18]
闪鑫,戴则梅,张哲,等. 智能电网调度控制系统综合智能告警研究及应用[J]. 电力系统自动化2015, 39(1): 65-72.
SHAN Xin, DAI Zemei, ZHANG Zhe, et al. Research on and application of integrated smart alarm based on smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2015, 39(1): 65-72.
[19]
闪鑫,陆晓,翟明玉,等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化2019, 43(1): 49-57.
SHAN Xin, LU Xiao, ZHAI Mingyu, et al. Analysis of key technologies for artificial intelligence applied to power grid dispatch and control[J]. Automation of Electric Power Systems, 2019, 43(1): 49-57.
[20]
SCHLEGL T, SEEBOCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//International Conference on Information Processing in Medical Imaging, Springer, Cham, 2017: 146-157.
[21]
陈郑平,米为民,林静怀,等. 电网调控操作智能助手方案探讨[J]. 电力系统自动化2019, 43(22): 173-179, 186.
CHEN Zhengping, MI Weimin, LIN Jinghuai, et al. Discussion on intelligence assistant scheme of dispatching and control operation in power grid[J]. Automation of Electric Power Systems, 2019, 43(22): 173-179, 186.
[22]
PAN C, CAO X, WU D. Power line detection via background noise removal[C]//IEEE Global Conference on Signal and Information Processing. Washington, USA: IEEE, 2017: 871-875.
[23]
孙宏斌,黄天恩,郭庆来,等. 面向调度决策的智能机器调度员研制与应用[J]. 电网技术2020, 44(1): 1-8.
SUN Hongbin, HUANG Tian'en, GUO Qinglai, et al. Automatic operator for decision-making in dispatch: research and applications[J]. Power System Technology, 2020, 44(1): 1-8.
[24]
李新鹏,徐建航,郭子明,等. 调度自动化系统知识图谱的构建与应用[J]. 中国电力2019, 52(2): 70-77, 157.
LI Xinpeng, XU Jianhang, GUO Ziming, et al. Construction and application of knowledge graph of power dispatching automation system[J]. Electric Power, 2019, 52(2): 70-77, 157.
[25]
杜明秋,李妍,王标,等. 电动汽车充电控制的深度增强学习优化方法[J]. 中国电机工程学报2019, 39(14): 4042-4048.
DU Mingqiu, LI Yan, WANG Biao, et al. Deep reinforcement learning optimization method for charging control of electric vehicles[J]. Proceedings of the CSEE, 2019, 39(14): 4042-4048.
[26]
马钊,周莉梅,袁海文,等. 现代配电网健康指数理论及其应用研究[J]. 中国电机工程学报2019, 39(1): 130-140.
MA Zhao, ZHOU Limei, YUAN Haiwen, et al. Health index methodology of modern distribution network and its application[J]. Proceedings of the CSEE, 2019, 39(1): 130-140.
[27]
张宇帆,艾芊,林琳,等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术2019, 43(6): 1884-1892.
ZHANG Yufan, AI Qian, LIN Lin, et al. A very short-term load forecasting method based on deep LSTM RNN at zone level[J]. Power System Technology, 2019, 43(6): 1884-1892.
[28]
DAI P, YU W, WEN G, et al. Distributed reinforcement learning algorithm for dynamic economic dispatch with unknown generation cost functions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2258-2267.
[29]
ZHANG X S, LI Q, YU T, et al. Consensus transfer Q-Learning for decentralized generation command dispatch based on virtual generation tribe[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 2152-2165.
[30]
ZENG P, LI H, HE H, et al. Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4435-4445.
[31]
许洪强,姚建国,南贵林,等. 未来电网调度控制系统应用功能的新特征[J]. 电力系统自动化2018, 42(1): 1-7.
XU Hongqiang, YAO Jianguo, NAN Guilin, et al. New features of application function for future dispatching and control systems[J]. Automation of Electric Power Systems, 2018, 42(1): 1-7.
[32]
李储欣. 基于航拍图像的输电线路绝缘子缺陷检测方法研究[D]. 沈阳:沈阳理工大学,2017.
LI Chuxin. Study on the detection of the defect insulator in transmission line based on the aerial image[D]. Shenyang: Shenyang Ligong University, 2017.
[33]
刘志颖,缪希仁,陈静,等. 电力架空线路巡检可见光图像智能处理研究综述[J]. 电网技术2020, 44(3): 1057-1069.
LIU Zhiying, MIAO Xiren, CHEN Jing, et al. Review of visible image intelligent processing for transmission line inspection[J]. Power System Technology, 2020, 44(3): 1057-1069.
[34]
邹栋. 输电线路中关键部件图像识别及异常检测方法研究[D]. 北京:华北电力大学,2017.
ZOU Dong. Research on recognition of key components and detection of anomaly in transmission line[D]. Beijing: North China Electric Power University, 2017.
[35]
刘一涵,纪坤华,傅晓飞,等. 配网带电作业机器人技术发展现状述评[J]. 电力与能源2019, 40(4): 446-451, 470.
LIU Yihan, JI Kunhua, FU Xiaofei, et al. Review on development of live working robot technology in distribution network[J]. Power & Energy, 2019, 40(4): 446-451, 470.
[36]
姜诗高. 基于深度学习的输电线路绝缘子故障检测研究[D]. 上海:东华大学,2022.
JIANG Shigao. Research on insulator defect detection of transmission line based on deep learning[D]. Shanghai: Donghua University, 2022.
[37]
李宏仲,付国,孙伟卿. 基于深度递归信念网络的风电功率短期预测方法[J]. 电力系统自动化2021, 45(15): 85-92.
LI Hongzhong, FU Guo, SUN Weiqing. Short-term wind power forecasting method based on deep recurrent belief network[J]. Automation of Electric Power Systems, 2021, 45(15): 85-92.
[38]
陆继翔,张琪培,杨志宏,等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化2019, 43(8): 131-137.
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid Neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.
[39]
沈兆轩,袁三男. 利用卷积神经网络支持向量回归机的地区负荷聚类集成预测[J]. 电网技术2020, 44(6): 2237-2244.
SHEN Zhaoxuan, YUAN Sannan. Regional load clustering integration forecasting based on convolutional neural network support vector regression machine[J]. Power System Technology, 2020, 44(6): 2237-2244.
[40]
吕海灿,王伟峰,赵兵,等. 基于Wide & Deep-LSTM模型的短期台区负荷预测[J]. 电网技术2020, 44(2): 428-436.
LV Haican, WANG Weifeng, ZHAO Bing, et al. Short-term substation load forecast based on Wide & Deep-LSTM model[J]. Power System Technology, 2020, 44(2): 428-436.
[41]
JAMES J Q, HOU Y, LAM A Y S, et al. Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1694-1703.
[42]
GOU M, ZENG X D, CHEN D Y, et al. Deep-Learning-Based earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems[J]. IEEE Sensors Journal, 2018, 18(3): 1291-1300.
[43]
赵滨滨,王莹,王彬,等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源2019, 37(6): 820-823.
ZHAO Binbin, WANG Ying, WANG Bin, et al. Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable Energy Resources, 2019, 37(6): 820-823.
[44]
阚博文,刘广一,MAHDI K, 等. 基于图机器学习的分布式光伏发电预测[J]. 供用电2019, 36(11): 20-27.
KAN Bowen, LIU Guangyi, MAHDI K, et al. Distributed photovoltaic generation prediction based on graph machine learning[J]. Distribution & Utilization, 2019, 36(11): 20-27.
[45]
马红明,刘林青,谢海鹏,等. 计及综合需求响应的电-热综合能源系统分布式光伏最大接入容量评估[J]. 智慧电力2021, 49(8): 23-30.
MA Hongming, LIU Linqing, XIE Haipeng, et al. Maximum access capacity assessment of distributed photovoltaic in integrated electric-thermal energy system considering integrated demand response[J]. Smart Power, 2021, 49(8): 23-30.
[46]
骆钊,吴谕侯,朱家祥,等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术2023, 47(9): 3527-3537.
LUO Zhao, WU Yuhou, ZHU Jiaxiang, et al. Wind power forecasting based on multi-scale time series block auto-encoder transformer neural network model[J]. Power System Technology, 2023, 47(9): 3527-3537.
[47]
黄玲玲,李锁,符杨,等. 基于风电机组状态的超短期海上风电功率预测[J]. 太阳能学报2022, 43(8): 391-398.
HUANG Lingling, LI Suo, FU Yang, et al. Ultra-short term offshore wind power prediction based on condition-assessment of wind turbines[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 391-398.
[48]
李铮,郭小江,申旭辉,等. 我国海上风电发展关键技术综述[J]. 发电技术2022, 43(2): 186-197.
LI Zheng, GUO Xiaojiang, SHEN Xuhui, et al. Summary of technologies for the development of offshore wind power industry in China[J]. Power Generation Technology, 2022, 43(2): 186-197.
[49]
李博,方彤. 北斗卫星导航系统(BDS)在智能电网的应用与展望[J]. 中国电力2020, 53(8): 107-116.
LI Bo, FANG Tong. Application and prospect of Beidou navigation satellite system (BDS) in smart grid[J]. Electric Power, 2020, 53(8): 107-116.

Funding

Science and Technology Project of SGCC(5100-201999444A-0-0-00)
PDF(10209 KB)

Accesses

Citation

Detail

Sections
Recommended

/