Reactive Power Optimization of Power Systems Containing Wind Farms Based on Improved Fireworks Algorithm

YOU Jie,HU Shuju,ZANG Chen,LI Wenbiao,HUO Wenyan

Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 58-65.

PDF(1920 KB)
PDF(1920 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (6) : 58-65. DOI: 10.16513/j.2096-2185.DE.2308608
Application Technology

Reactive Power Optimization of Power Systems Containing Wind Farms Based on Improved Fireworks Algorithm

Author information +
History +

Abstract

In response to the application demand for multi-objective reactive power optimization in power systems containing wind farms and the issues of local easy convergence and poor global search ability of optimization algorithms, a vector fireworks algorithm is proposed for multi-objective reactive power optimization. Firstly, the explosion method of the fireworks algorithm is modified, and the dimensions of the fireworks explosion are correlated to avoid falling into a local optimal solution during the iteration process and to enhance the global search capability of the algorithm. Secondly, a novel congestion selection strategy is introduced to accelerate the convergence speed of the algorithm. Lastly, a multi-objective reactive power optimization model for power systems containing wind farms is established, with the objectives of minimizing active network loss and voltage deviation. The model is solved as an example of an IEEE 14-node power network with a wind farm. The results indicate that the proposed algorithm mitigates the issue of local convergence, enhances the global search capability of the algorithm, and can obtain effective reactive power optimization solutions under different optimization requirements.

Key words

wind farm / multi-objective optimization / fireworks algorithm / reactive power optimization

Cite this article

Download Citations
Jie YOU , Shuju HU , Chen ZANG , et al . Reactive Power Optimization of Power Systems Containing Wind Farms Based on Improved Fireworks Algorithm[J]. Distributed Energy Resources. 2023, 8(6): 58-65 https://doi.org/10.16513/j.2096-2185.DE.2308608

References

[1]
WEI Yiming, CHEN Kaiyuan, KANG Jianing, et al. Policy and management of carbon peaking and carbon neutrality: A literature review[J]. Engineering, 2022, 14(1): 52-63.
[2]
张 磊,向紫藤,余朋军,等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力2021, 49(10): 75-82.
ZHANG Lei, XIANG Ziteng, YU Pengjun, et al. Dynamic environmental economic dispatch of power system with wind farm based on green certificate transaction mechanisms[J]. Smart Power, 2021, 49(10): 75-82.
[3]
郭凯,张秀琦,曹斌,等. 海上风力发电可靠性影响因素分析及提升方法[J]. 内蒙古电力技术2022, 40(5): 16-21.
GUO Kai, ZHANG Xiuqi, CAO Bin, et al. Analysis of factors affecting reliability of offshore wind power and improvement methods[J]. Inner Mongolia Electric Power, 2022, 40(5): 16-21.
[4]
黄树帮,陈耀,金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术2021, 42(1): 60-68.
HUANG Shubang, CHEN Yao, JIN Yuqing. A multi-channel feature combination model for ultra-short-term wind power prediction under carbon neutral background[J]. Power Generation Technology, 2021, 42(1): 60-68.
[5]
李建林,李光辉,梁丹曦,等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源2021, 6(5): 1-9.
LI Jianlin, LI Guanghui, LIANG Danxi, et al. Review and prospect of hydrogen production technology from renewable energy under “double carbon target”[J]. Distributed Energy, 2021, 6(5): 1-9.
[6]
LIU Yichen, DRAGAN Ć, LI Haiyu, et al. An optimized multi-objective reactive power dispatch strategy based on improved genetic algorithm for wind power integrated systems[J]. International Journal of Electrical Power & Energy Systems, 2022, 136(1): 107764.
[7]
BABANEZHAD M, NOWDEH S A, ALMOATAZ Y, et al. Reactive power based capacitors allocation in distribution network using mathematical remora optimization algorithm considering operation cost and loading conditions[J]. Alexandria Engineering Journal, 2022, 61(12): 10511-10526.
[8]
倪爽,崔承刚,杨宁,等. 基于深度强化学习的配电网多时间尺度在线无功优化[J]. 电力系统自动化2021, 45(10): 77-85.
NI Shuang, CUI Chenggang, YANG Ning, et al. Multi-time scale online reactive power optimization of distribution network based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(10): 77-85.
[9]
付英杰,汪沨,谭阳红. 基于Pareto最优解的含分布式电源配电网无功优化[J]. 电力系统及其自动化学报2017, 29(1): 18-23.
FU Yingjie, WANG Feng, TAN Yanghong. Reactive power optimization of distribution network containing distributed generation based on Pareto optimal[J]. Proceedings of the CSU-EPSA, 2017, 29(1): 18-23.
[10]
MARTINEZ-ROJAS M, SUMPER A, GOMIS-BELLMUNT O, et al. Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search[J]. Applied Energy, 2011, 88(12): 4678-4686.
[11]
李澎,彭敏放. 基于改进遗传算法的含风电场电力系统无功优化[J]. 现代电子技术2020, 43(13): 167-171.
LI Peng, PENG Minfang. Reactive power optimization of power system with wind farm based on improved genetic algorithm[J]. Modern Electronics Technique, 2020, 43(13): 167-171.
[12]
鲁改凤,欧钰雷,杜帅,等. 基于改进HPSO算法的风电场内部无功优化研究[J]. 电测与仪表2020, 57(10): 36-42.
LU Gaifeng, OU Yulei, DU Shuai, et al. Research on internal reactive power optimization of wind farm based on improved HPSO algorithm[J]. Electrical Measurement & Instrumentation, 2020, 57(10): 36-42.
[13]
江泽昌,刘天羽,江秀臣,等. 考虑DG与负荷不确定性的主动配电网重构[J]. 电测与仪表2019, 56(19): 76-84.
JANG Zechang, LIU Tianyu, JIANG Xiuchen, et al. Active distribution network reconfiguration considering DG and load uncertainty[J]. Electrical Measurement and Instrumentation, 2019, 56(19): 76-84.
[14]
彭博,邹乐,李昕,等. 基于改进烟花算法的配电网优化重构[J]. 应用科技2023, 50(4): 84-89.
PENG Bo, ZOU Le, LI Xin, et al. Optimal reconfiguration of distribution networks based on improved fireworks algorithm[J]. Applied Science and Technology, 2023, 50(4): 84-89.
[15]
杨茂,杨琼琼. 风电机组风速-功率特性曲线建模研究综述[J]. 电力自动化设备2018, 38(2): 34-43.
YANG Mao, YANG Qiongqiong. Review of wind turbine wind-power characteristic curve modeling[J]. Electric Power Automation Equipment, 2018, 38(2): 34-43.
[16]
杨莹. 含双馈风机的配电网多场景无功优化研究[D]. 沈阳:沈阳农业大学,2019.
YANG Ying. Multi-scenario reactive power optimization of distribution network with doubly-fed fan[D]. Shenyang: Shenyang Agricultural University, 2019.
[17]
ZHAO Zhigang, LI Zhimei, MO Haimiao, et al. Review of research on fireworks algorithm[EB/OL]. (2022-02-28)[2023-05-03].
[18]
ROOSTAPOUR V, NEUMANN A, NEUMANN F, et al. Pareto optimization for subset selection with dynamic cost constraints[J]. Artificial Intelligence, 2022, 302(1): 103597.
[19]
曹善康,魏繁荣,林湘宁,等. 网侧电压跌落下计及无功支撑效能的直流微电网多目标优化策略[J]. 中国电机工程学报2023, 43(15): 5759-5772.
CAO Shankang, WEI Fanrong, LIN Xiangning, et al. Multi-objective optimisation strategy for DC microgrids with grid-side voltage dip undercounting and reactive power support effectiveness[J]. Proceedings of the CSEE, 2023, 43(15): 5759-5772.

Funding

Science and Technology Major Special Project of Inner Mongolia Autonomous Region(2021ZD0027)
PDF(1920 KB)

Accesses

Citation

Detail

Sections
Recommended

/