Equivalent Modeling of Wind Farm Based on PSO-LSTM-ECM Method

Qing ZHU, Pengcheng CAI, Weiwei ZHU, Fangru WAN, Caihua LIU, Xia ZHOU, Xuekuan CHEN

Distributed Energy ›› 2025, Vol. 10 ›› Issue (3) : 11-22.

PDF(3426 KB)
PDF(3426 KB)
Distributed Energy ›› 2025, Vol. 10 ›› Issue (3) : 11-22. DOI: 10.16513/j.2096-2185.DE.24090666
Basic Research

Equivalent Modeling of Wind Farm Based on PSO-LSTM-ECM Method

Author information +
History +

Abstract

Dynamic equivalent modeling of large-scale wind farms is the foundation for studying wind power grid integration,while the clustering-based equivalent model of wind farms cannot fit the dynamic output characteristics with high accuracy,and the poor generalization ability in its application is an inherent defect of clustering based model. Aiming at this problem,this paper proposes a wind farm equivalent modeling method based on particle swarm optimization-long short term memory neural network-error correction model (PSO-LSTM-ECM). Firstly,K-means clustering algorithm and capacity weighting method are used to cluster wind turbines in wind farms,and a clustering equivalent model of the wind farms is constructed; Then,ECM is constructed based on the transient response errors of the detailed model and the clustering equivalent model,and the correction model is obtained through the LSTM neural network training optimized by PSO,and the output value of the network is compensated to the clustering equivalent model; Finally,a joint simulation is conducted on PSCAD and Matlab platforms to compare and analyze the detailed wind farm model,clustering equivalent model,and the model proposed in this paper. The result proves the effectiveness and superiority of the proposed model.

Key words

wind farm / equivalent modeling / deep learning / error correction model / long short-term memory neural network

Cite this article

Download Citations
Qing ZHU , Pengcheng CAI , Weiwei ZHU , et al . Equivalent Modeling of Wind Farm Based on PSO-LSTM-ECM Method[J]. Distributed Energy Resources. 2025, 10(3): 11-22 https://doi.org/10.16513/j.2096-2185.DE.24090666

References

[1]
崔茗莉, 冯天天, 刘利利. 双碳目标下区块链与可再生能源的融合发展研究[J]. 智慧电力, 2024, 52(2):17-24.
CUI Mingli, FENG Tiantian, LIU Lili. Integration and development of blockchain and renewable energy under double carbon target[J]. Smart Power, 2024, 52(2):17-24.
[2]
张力菠, 吴一锴, 王群伟. 考虑碳中和目标与成本优化的可再生能源大规模发展规划[J]. 广东电力, 2023, 36(7):31-39.
ZHANG Libo, WU Yikai, WANG Qunwei. Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J]. Guangdong Electric Power, 2023, 36(7): 31-39.
[3]
吕思琦, 孙华东, 宋瑞华, 等. 面向电网等值的汇集站下直驱风电场群频域聚合建模方法[J/OL]. 电力系统自动化,1-17[2025-05-20]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250519.0858.004.html.
LYU Siqi, SUN Huadong, SONG Ruihua, et al. Frequency-domain aggregation modeling method for direct-drive wind farm clusters under collection station oriented to power grid equivalence[J/OL]. Proceedings of the CSU-EPSA,1-17[2025-05-20]. http://kns.cnki.net/kcms/detail/32.1180.TP.20250519.0858.004.html.
[4]
张元, 郝丽丽, 戴嘉祺. 风电场等值建模研究综述[J]. 电力系统保护与控制, 2015, 43(6): 138-146.
ZHANG Yuan, HAO Lili, DAI Jiaqi. A review of equivalent modeling research on wind farms[J]. Power System Protection and Control, 2015, 43(6): 138-146.
[5]
韩爽, 刘杉. 高空风力发电关键技术、现状及发展趋势[J]. 分布式能源, 2024, 9(1): 1-9.
HAN Shuang, LIU Shan. Key technologies, current status and development trends of high-altitude wind power generation[J]. Distributed Energy, 2024, 9(1): 1-9.
[6]
汪林光, 谢小荣, 贺静波, 等. 采用多元线性回归方法分析短路比对风电并网系统小干扰稳定性的影响[J]. 电力建设, 2023, 44(4): 113-118.
Abstract
短路比对风电并网系统的小干扰稳定性有重要影响,常规机理性或仿真分析仅关注特定场景下参数的影响,而缺乏全工况下的宏观把握,文章提出多元线性回归方法来解决这一问题。首先介绍风电并网系统中重点关注的两类小干扰稳定性(包括同步稳定性和次/超同步振荡稳定性)的机理与分析方法;其次回顾新能源场景下单机系统短路比定义;然后构建基于多元线性回归的统计性分析方法,通过对大量判稳算例进行回归分析来总体评估小干扰稳定性的影响因素;最后将所述方法分别应用于直驱和双馈风电机组并网系统,分析了短路比对同步稳定性和次/超同步振荡稳定性影响的量化特征。研究结果可用于指导短路比指标在风电系统小干扰稳定性评估中的应用。
WANG Linguang, XIE Xiaorong, HE Jingbo, et al. Multiple-linear-regression based analysis of the impact of short circuit ratio on small-disturbance stability of wind power grid-connec-tion systems[J]. Electric Power Construction, 2023, 44(4): 113-118.

The short-circuit ratio has a big impact on the small-signal stability of the wind power grid-connection systems. Conventional mechanism analysis or simulation mainly focuses on the impact of parameters on the stability under specific operating conditions rather than all possible operating conditions. To fill this gap, this paper proposes a method based on multiple linear regressions. In this paper, the mechanism and analysis methods of the two concerned types of small-disturbance stability (including synchronous stability and sub/super-synchronous oscillation stability) are firstly introduced. Secondly, the definition of short-circuit ratio in the single-infeed wind power systems is reviewed. Then, a statistical analysis method based on the multiple linear regressions is constructed to assess the impact factors by numerous stability analysis cases. Finally, the method is applied to the grid-connected PMSG and DFIG systems to quantify the impact of the short-circuit ratio on the small-disturbance stability. The results can be used to guide the application of the short-circuit ratio in the small-disturbance stability evaluation of the wind power systems.

[7]
王耀函, 张扬帆, 赵庆旭, 等. 低电压穿越过程中风电机组载荷特性联合仿真研究[J]. 发电技术, 2024, 45(4):705-715.
Abstract
目的 电网电压跌落故障会引起风电机组载荷的剧烈变化,严重影响风电机组的安全稳定运行。随着风电机组的大型化,风电叶片长度不断增加,塔筒增高,其载荷特性对系统参数波动变得敏感。因此,需要研究电网电压跌落过程中关键部件的载荷与振动特性。 方法 提出了基于动态链接库和Socket通信的数据交互方式,建立了Simulink与Bladed的联合仿真方法。基于某3.4 MW风电机组模型,采用给定风速变化的工况对联合仿真平台进行验证。研究了低电压穿越(low voltage ride through,LVRT)过程中机组总体性能与叶片、塔筒载荷的变化关系。 结果 电网电压跌落幅值对电机功率影响较大,对风轮的调节参数影响较小。低电压穿越过程中风轮的桨矩角调节和转速有较长时间的波动,叶片外叶展处载荷的变化大于内叶展处,叶尖位移增加。塔架的振动频率与固有频率接近,存在潜在风险,需要在机组设计中考虑。 结论 联合仿真平台可以很好地模拟风电机组的气动性能与部件载荷的暂态特性,为机组的优化控制提供参考。
WANG Yaohan, ZHANG Yangfan, ZHAO Qingxu, et al. Joint simulation study on load characteristics of wind turbines in low voltage ride through process[J]. Power Generation Tech-nology, 2024, 45(4):705-715.
[8]
窦宇宇, 林楠, 任正, 等. 风电机组大扰动暂态过电压机理分析及优化抑制[J]. 山东电力技术, 2023, 50(5):28-33.
DOU Yuyu, LIN Nan, REN Zheng, et al. Mechanism analysis and optimization suppression strategy of large disturbance transient overvoltage of wind turbine[J]. Shandong Electric Power, 2023, 50(5):28-33.
[9]
MEHRJOO M, JOZANI M, PAWLAK M, et al. A multilevel modeling approach towards wind farm aggregated power curve[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2230-2237.
[10]
SHABANIKIA N, NIA A, TABESH A, et al. Weighted dynamic aggregation modeling of induction machine-based wind farms[J]. 2021, 12(3): 1604-1614.
[11]
ZHOU Y, ZHAO L, MATSUO I, et al. A dynamic weighted aggregation equivalent modeling approach for the DFIG wind farm considering the weibull distribution for fault analysis[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5514-5523.
[12]
张洋溢. 风电场动态等值建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
ZHANG Yangyi. Research on dynamic equivalent modeling method for wind farm[D]. Harbin: Harbin Institute of Technology, 2015.
[13]
陈昆明, 马成斌. 基于DIgSILENT的风电场等值建模研究[J]. 电气技术, 2020, 21(4): 15-19, 75.
CHEN Kunming, MA Chengbin. Research on equivalent modeling of wind farm based on DIGSILENT[J]. Electrical Engineering, 2020, 21(4): 15-19, 75.
[14]
EKANAYAKE J, HOLDSWORTH L, WU X, et al. Dynamic modeling of doubly fed induction generator wind turbines[J]. IEEE Transactions on Power Systems, 2003, 18(2): 803-809.
[15]
ZOU J, PENG C, YAN Y, et al. A survey of dynamic equivalent modeling for wind farm[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 956-963.
[16]
董文凯, 任必兴, 王海风, 等. 适用于系统次同步振荡分析的风电场等值建模方法综述[J]. 电力工程技术, 2022, 41(4): 33-43.
DONG Wenkai, REN Bixing, WANG Haifeng, et al. Overview of equivalent modeling methods for wind farm for system subsynchronous oscillation analysis[J]. Electric Power Engineering Technology, 2022, 41(4): 33-43.
[17]
张弛, 吴小康. 风电场动态等值建模研究综述[J]. 陕西电力, 2015, 43(3): 29-34.
ZHANG Chi, WU Xiaokang. A review of dynamic equivalent modeling research on wind farms[J]. Shaanxi Electric Power, 2015, 43(3): 29-34.
[18]
LI H, YANG C, ZHAO B, et al. Aggregated models and transient performances of a mixed wind farm with different wind turbine generator systems[J]. Electric Power Systems Research, 2012, 92: 1-10.
[19]
CHENG X, LEE W, SAHNI M, et al. Dynamic equivalent model development to improve the operation efficiency of wind farm[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2759-2767.
[20]
古庭赟, 杨骐嘉, 林呈辉, 等. 基于单机等值与选择模态分析的风电场等值建模方法[J]. 电力系统保护与控制, 2020, 48(1):102-111.
GU Tingyun, YANG Qijia, LIN Chenghui, et al. Wind farm equivalent modeling method based on single machine equivalent and selected modal analysis[J]. Power System Protection and Control, 2020, 48(1): 102-111.
[21]
栗然, 唐凡, 刘英培, 等. 基于自适应变异粒子群算法的双馈风电机组等值建模[J]. 电力系统自动化, 2012, 36(4): 22-27.
LI Ran, TANG Fan, LIU Yingpei, et al. Equivalent modeling of doubly fed wind turbines based on adaptive mutation particle swarm algorithm[J]. Automation of Electric Power Systems, 2012, 36(4): 22-27.
[22]
吴磊, 晁璞璞, 李甘, 等. 数据-模型混合驱动的风电场聚合等值建模方法[J]. 电力系统自动化, 2022, 46(15): 66-74.
WU Lei, CHAO Pupu, LI Gan, et al. Data model hybrid driven equivalent modeling method for wind farm aggregation[J]. Automation of Electric Power Systems, 2022, 46(15): 66-74.
[23]
丁明, 朱乾龙, 韩平平, 等. 计及Crowbar保护的双馈风电场等值建模研究[J]. 太阳能学报, 2016, 37(9): 2209-2216.
DING Ming, ZHU Qianlong, HAN Pingping, et al. Research on equivalent modeling of double fed wind farm considering crowbar protection[J]. Acta Energiae Solaris Sinica, 2016, 37(9): 2209-2216.
[24]
韩佶, 苗世洪, 李力行, 等. 基于多视角迁移学习的风场内机群划分及等值风场参数综合优化[J]. 中国电机工程学报, 2020, 40(15): 4866-4881.
HAN Ji, MIAO Shihong, LI Lixing, et al. Multi perspective transfer learning based wind farm cluster partitioning and comprehensive optimization of equivalent wind farm parameters[J]. Proceedings of the CSEE, 2020, 40(15): 4866-4881.
[25]
李应龙, 蔺红. 基于低电压恢复策略的永磁直驱风电场等值建模[J]. 现代电子技术, 2022, 45(7): 137-142.
LI Yinglong, LIN Hong. Equivalent modeling of permanent magnet direct drive wind farm based on low voltage recovery strategy[J]. Modern Electronics Technique, 2022, 45(7): 137-142.
[26]
袁优, 康积涛, 王德林, 等. 考虑空间效应的风电场动态特性等值方法研究[J]. 中国电力, 2016, 49(12): 144-149.
YUAN You, KANG Jitao, WANG Delin, et al. Research on equivalent method for dynamic characteristics of wind farm considering spatial effects[J]. Electric Power, 2016, 49(12): 144-149.
[27]
苏剑涛, 郑书婷, 严干贵, 等. 基于改进FCM聚类算法的风电场等值建模研究[J]. 智慧电力, 2021, 49(10): 68-74.
SU Jiantao, ZHENG Shuting, YAN Gangui, et al. Research on equivalent modeling of wind farm based on improved FCM clustering algorithm[J]. Smart Power, 2021, 49(10): 68-74.
[28]
RAHMAN M, HASAN K, SOKOLOWSKI P. Evaluation of wind farm aggregation using probabilistic clustering algorithms for power system stability assessment[J]. Sustai-nable Energy, Grids and Networks, 2022, 30: 100678.
[29]
李丹, 刘厦, 郭希海, 等. 基于时延神经网络的风电场集总调压动态建模[J]. 电力系统及其自动化学报, 2022, 34(10): 104-111.
LI Dan, LIU Xia, GUO Xihai, et al. Dynamic modeling of centralized voltage regulation in wind farms based on time-delay neural networks[J]. Proceedings of the CSU-EPSA, 2022, 34(10): 104-111.
[30]
肖运启, 李浩志, 卢泽众, 等. 大型风电场多Agent系统建模仿真及降损控制[J]. 太阳能学报, 2022, 43(9): 314-320.
Abstract
设计一种基于多Agent的风电场控制架构,并针对集电线路损耗突出的问题,提出一种无功降损控制策略。同时,开发基于Java/JADE + MySQL + Matlab/Simulink的混合仿真平台,对某125 MW大型风电场进行多Agent系统建模,算例结果验证了所提策略的有效性。
XIAO Yunqi, LI Haozhi, LU Zezhong, et al. Modeling, simulation, and loss reduction control of multi-agent systems for large-scale wind farms[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 314-320.
Due to the increasing installed capacity of wind farm, traditional centralized control and communication mode cannot meet the requirements of operation reliability and compatibility. Therefore, a wind farm control framework based on multi-agent is designed, with a novel reactive power control strategy for collector line loss reduction. Meanwhile, a hybrid multi-agent simulation platform based on Java/JADE+MySQL+Matlab/Simulink is developed, on which a 125 MW wind farm is modeled and simulated. The study results verify the effectiveness of the strategy proposed.
[31]
丁明, 马彪, 韩平平. 用P-V分析法比较几种风电场静态等值建模[J]. 中国电力, 2013, 46(1): 26-29.
DING Ming, MA Biao, HAN Pingping. Comparison of static equivalent modeling of several wind farms using P-V analysis method[J]. Electric Power, 2013, 46(1): 26-29.
[32]
GREFF K, SRIVASTAVA R, JAN K, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10): 2222-2232.
[33]
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[34]
ZUO B, CHENG J S, ZHANG Z H. Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15928-15937.

Funding

National Natural Science Foundation of China (Key Program)(61933005)
PDF(3426 KB)

Accesses

Citation

Detail

Sections
Recommended

/