Review and Prospect of Electricity Market Price Prediction

GUO Ying, CAO Fan, SONG Yin, MA Kang, WANG Wei, JIANG Dong

Distributed Energy ›› 2025, Vol. 10 ›› Issue (4) : 1-12.

PDF(20197 KB)
PDF(20197 KB)
Distributed Energy ›› 2025, Vol. 10 ›› Issue (4) : 1-12. DOI: 10.16513/j.2096-2185.DE.24090727

Review and Prospect of Electricity Market Price Prediction

Author information +
History +

Abstract

In the context of electricity market transactions, price forecasting has increasingly become an indispensable component of decision-making mechanisms for energy enterprises and serves as a crucial basis for market participants to formulate bidding strategies. Accurate electricity price forecasts assist various trading entities in the power market in reducing bidding risks and maximizing their interests. Therefore, researching electricity price forecasting holds significant importance. However, due to multiple influencing factors such as meteorological conditions, load demand, line congestion, and policy changes, electricity prices exhibit complex uncertainties and notable volatility. To address this issue, methods for predicting electricity prices have diversified over time. Nevertheless, challenges remain in achieving precise forecasts due to the scarcity of high-quality trading data and inherent flaws in prediction algorithms. This paper reviews relevant research findings on electricity price forecasting both domestically and internationally. Firstly, it analyzes the mechanisms behind price formation along with its influencing factors while summarizing related theoretical research methodologies. Secondly, it provides a detailed overview of recent advancements in electricity price forecasting methods by categorizing them into four main areas: time series prediction models, traditional machine learning models, deep learning models, and hybrid models; each method is discussed thoroughly with critical analysis. Finally, from perspectives including influencing factors, data preprocessing techniques, method selection criteria as well as evaluation metrics, this study anticipates future trends in electricity price forecasting.

Key words

electricity market / price forecasting / time series prediction method / neural networks / deep learning

Cite this article

Download Citations
GUO Ying , CAO Fan , SONG Yin , et al . Review and Prospect of Electricity Market Price Prediction[J]. Distributed Energy Resources. 2025, 10(4): 1-12 https://doi.org/10.16513/j.2096-2185.DE.24090727

References

[1]
孙大雁, 史新红, 冯树海, 等. 全国统一电力市场环境下的电力辅助服务市场体系设计[J]. 电力系统自动化, 2024, 48(4):13-24.
SUN Dayan, SHI Xinhong, FENG Shuhai, et al. Design of power auxiliary service market system under the national unified power market environment[J]. Automation of Electric Power Systems, 2024, 48(4):13-24.
[2]
李鹏, 项特, 王子轩, 等. 基于改进长期增量成本法的可靠性电价制定方法[J]. 电力系统自动化, 2023, 47(5): 114-122.
LI Peng, XIANG Te, WANG Zixuan, et al. Reliability pricing method based on improved long-run incremental cost method[J]. Automation of Electric Power Systems, 2023, 47(5): 114-122.
[3]
朱海宽. 电力现货模式下H公司电价预测优化及对经营效果的影响的研究[D]. 济南: 山东师范大学, 2024.
ZHU Haikuan. Research on optimization of price forecast of H company and its influence on operation effect under power spot model[D]. Jinan: Shandong Normal University, 2024.
[4]
PATERAKIS N G, ERDINÇ O, CATALÃO J P S. An overview of demand response: Key-elements and international experience[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 871-891.
[5]
韩升科, 胡飞虎, 陈之腾, 等. 基于GCN-LSTM的日前市场边际电价预测[J]. 中国电机工程学报, 2022, 42(9): 3276-3286.
HAN Shengke, HU Feihu, CHEN Zhiteng, et al. Day ahead market marginal price forecasting based on GCN-LSTM[J]. Proceedings of the CSEE, 2022, 42(9): 3276-3286.
[6]
郑亚先, 杨争林, 冯树海, 等. 碳达峰目标场景下全国统一电力市场关键问题分析[J]. 电网技术, 2022, 46(1): 1-20.
ZHENG Yaxian, YANG Zhenglin, FENG Shuhai, et al. Key issue analysis in national unified power market under target scenario of carbon emission peak[J]. Power System Technology, 2022, 46(1): 1-20.
[7]
张显, 王锡凡. 短期电价预测综述[J]. 电力系统自动化, 2006, 30(3): 92-101.
ZHANG Xian, WANG Xifan. Review of the short-term electricity price forecasting[J]. Automation of Electric Power Systems, 2006, 30(3): 92-101.
[8]
王珂珂. 计及新能源的电力现货市场交易优化研究[D]. 北京: 华北电力大学, 2021.
WANG Keke. Electricity spot market transaction optimization considering new energy[D]. Beijing: North China Electric Power University, 2021.
[9]
章江. 时间序列预测方法及其在电力系统中的应用[D]. 长沙: 湖南大学, 2018.
ZHANG Jiang. Time series forecasting method and its application in power system[D]. Changsha: Hunan University, 2018.
[10]
JĘDRZEJEWSKI A, LAGO J, MARCJASZ G, et al. Electricity price forecasting: The dawn of machine learning[J]. IEEE Power and Energy Magazine, 2022, 20(3): 24-31.
[11]
梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
Abstract
时间序列一般是指对某种事物发展变化过程进行观测并按照一定频率采集得出的一组随机变量。时间序列预测的任务就是从众多数据中挖掘出其蕴含的核心规律并且依据已知的因素对未来的数据做出准确的估计。由于大量物联网数据采集设备的接入、多维数据的爆炸增长和对预测精度的要求愈发苛刻,经典的参数模型以及传统机器学习算法难以满足预测任务的高效率和高精度需求。近年来,以卷积神经网络、循环神经网络和Transformer模型为代表的深度学习算法在时间序列预测任务中取得了丰硕的成果。为进一步促进时间序列预测技术的发展,综述了时间序列数据的常见特性、数据集和模型的评价指标,并以时间和算法架构为研究主线,实验对比分析了各预测算法的特点、优势和局限;着重介绍对比了多个基于Transformer模型的时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在的问题与挑战,对未来该方向的研究趋势进行了展望。
LIANG Hongtao, LIU Shuo, DU Junwei, et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300.
[12]
武永江. 深度学习在电力现货价格预测中的应用研究[D]. 太原: 太原科技大学, 2021.
WU Yongjiang. Application of deep learing in power spot price foreasting[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.
[13]
张金良. 电力市场环境下的短期电价混合预测模型研究[D]. 北京: 华北电力大学, 2011.
ZHANG Jinliang. Research on hybrid forecasting model of short term electricity price in electricity market environment[D]. Beijing: North China Electric Power University, 2011.
[14]
ACAROĞLU H, GARCÍA MÁRQUEZ F P. Compre-hensive review on electricity market price and load forecasting based on wind energy[J]. Energies, 2021, 14(22): 7473.
[15]
GABRIELLI P, WÜTHRICH M, BLUME S, et al. Data-driven modeling for long-term electricity price forecasting[J]. Energy, 2022, 244: 123107.
[16]
丛野. 与电力现货市场协同的输电定价理论与方法研究[D]. 北京: 华北电力大学, 2021.
CONG Ye. Research on theory and methods of transmission pricing coordinating with electricity spot market[D]. Beijing: North China Electric Power University, 2021.
[17]
张慧. 输配电价改革下的会计成本核算管理探讨[J]. 电力大数据, 2018, 21(3): 79-82.
ZHANG Hui. Accounting cost management under the reform of transmission and distribution price[J]. Power Systems and Big Data, 2018, 21(3): 79-82.
[18]
欧华钰. 需求响应背景下分时电价研究综述[J]. 电气开关, 2023, 61(5): 6-11,17.
OU Huayu. Summary of time-of-use research in a demand response environment[J]. Electric Switchgear, 2023, 61(5): 6-11,17.
[19]
黄海涛, 金天新. 基于长期边际成本的输电定价方法[J]. 电网与清洁能源, 2018, 34(6): 1-6.
HUANG Haitao, JIN Tianxin. Pricing method for power transmission based on long-run marginal cost[J]. Power System and Clean Energy, 2018, 34(6): 1-6.
[20]
潘昭帅, 张照志, 吴晴. 大宗矿产品价格预测方法的发展综述[J]. 中国矿业, 2022, 31(3): 20-30.
PAN Zhaoshuai, ZHANG Zhaozhi, WU Qing. Review on the development of price forecasting methods for bulk mineral products[J]. China Mining Magazine, 2022, 31(3): 20-30.
[21]
CONEJO A J, PLAZAS M A, ESPINOLA R, et al. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models[J]. IEEE Transactions on Power Systems, 2005, 20(2): 1035-1042.
[22]
BOWDEN N, PAYNE J E. Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models[J]. Energy Economics, 2008, 30(6): 3186-3197.
[23]
KNITTEL C R, ROBERTS M R. An empirical examination of restructured electricity prices[J]. Energy Economics, 2005, 27(5): 791-817.
[24]
DIONGUE A K, GUÉGAN D, VIGNAL B. Forecasting electricity spot market prices with a k-factor GIGARCH process[J]. Applied Energy, 2009, 86(4): 505-510.
[25]
刘丽燕, 邹小燕. GARCH族模型在电力市场电价预测中的比较研究[J]. 电力系统保护与控制, 2016, 44(4): 57-63.
LIU Liyan, ZOU Xiaoyan. Comparison of GARCH models in electricity price forecasting[J]. Power System Protection and Control, 2016, 44(4): 57-63.
[26]
LIU H, SHI J. Applying ARMA-GARCH approaches to forecasting short-term electricity prices[J]. Energy Econo-mics, 2013, 37: 152-166.
[27]
WANG A, RAMSAY B. Prediction of system marginal price in the UK Power Pool using neural networks[C]// Proceedings of International Conference on Neural Networks (ICNN’97). Houston, TX, USA: IEEE, 1997: 2116-2120.
[28]
YI M, XIE W, MO L. Short-term electricity price forecasting based on BP neural network optimized by SAPSO[J]. Energies, 2021, 14(20): 6514.
[29]
王金鑫, 蒋子彦, 王琪, 等. 基于SA-BP算法的蒙西电力现货市场价格预测[J]. 内蒙古电力技术, 2021, 39(4): 42-46.
WANG Jinxin, JIANG Ziyan, WANG Qi, et al. Price forecasting for west Inner Mongolia power spot market based on SA-BP algorithm[J]. Inner Mongolia Electric Power, 2021, 39(4): 42-46.
[30]
杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学, 2019, 46(1): 21-28.
Abstract
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内依照给定的采样率对某种潜在过程进行观测的结果。时间序列数据本质上反映的是某个或者某些随机变量随时间不断变化的趋势,而时间序列预测方法的核心就是从数据中挖掘出这种规律,并利用其对将来的数据做出估计。针对时间序列预测方法,着重介绍了传统的时间序列预测方法、基于机器学习的时间序列预测方法和基于参数模型的在线时间序列预测方法,并对未来的研究方向进行了进一步的展望。
YANG Haimin, PAN Zhisong, BAI Wei. Review of time series prediction methods[J]. Computer Science, 2019, 46(1): 21-28.
Time series is a set of random variables ordered in timestamp.It is often the observation of an underlying process,in which values are collected from uniformly spaced time instants,according to a given sampling rate.Time series data essentially reflects the trend that one or some random variables change with time.The core of time series prediction is mining the rule from data and making use of it to estimate future data.This paper emphatically introduced a summary of time series prediction method,namely the traditional time series prediction method,machine learning based time series prediction method and online time series prediction method based on parameter model,andfurther prospected the future research direction.
[31]
WANG K, XU C, ZHANG Y, et al. Robust big data analytics for electricity price forecasting in the smart grid[J]. IEEE Transactions on Big Data, 2019, 5(1): 34-45.
[32]
陈杰尧, 陶春华, 马光文, 等. 基于数据挖掘与支持向量机的现货市场出清价预测方法[J]. 电网与清洁能源, 2020, 36(10): 14-19,27.
CHEN Jieyao, TAO Chunhua, MA Guangwen, et al. Forecasting method of spot market clearing price based on data mining and support vector machine[J]. Power System and Clean Energy, 2020, 36(10): 14-19,27.
[33]
吴霜. 基于数据分析和改进DE-SVM模型的电价预测方法[D]. 武汉: 湖北工业大学, 2021.
WU Shuang. Forecast of electricity price based on data analysis and the model of improved DE-SVM[D]. Wuhan: Hubei University of Technology, 2021.
[34]
LUDWIG N, FEUERRIEGEL S, NEUMANN D. Putting big data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests[J]. Journal of Decision Systems, 2015, 24(1): 19-36.
[35]
BISOI R, DASH P K, DAS P P. Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine[J]. Neural Computing and Applications, 2020, 32(5): 1457-1480.
[36]
XIAO C, SUTANTO D, MUTTAQI K M, et al. Online sequential extreme learning machine algorithm for better prediction of the real-time electricity price under dynamic environmental changes[C]// 2019 IEEE Industry Applications Society Annual Meeting. Baltimore, MD, USA: IEEE, 2019: 1-6.
[37]
胡艳美, 王品, 丁亦新, 等. 基于MKELM的智能电网短期电价预测与分类[J]. 高电压技术, 2023, 49(S1): 47-52.
HU Yanmei, WANG Pin, DING Yixin, et al. Short-term electricity price forecast and classification of smart grid based on MKELM[J]. High Voltage Engineering, 2023, 49(S1): 47-52.
[38]
CHEN Y, WANG Y, MA J, et al. BRIM: An accurate electricity spot price prediction scheme-based bidirectional recurrent neural network and integrated market[J]. Energies, 2019, 12(12): 2241.
[39]
LI W, BECKER D M. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling[J]. Energy, 2021, 237: 121543.
[40]
殷豪, 丁伟锋, 陈顺, 等. 基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测[J]. 电网技术, 2022, 46(2): 472-480.
YIN Hao, DING Weifeng, CHEN Shun, et al. Day-ahead electricity price forecasting of electricity market with high proportion of new energy based on LSTM-CSO model[J]. Power System Technology, 2022, 46(2): 472-480.
[41]
赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41(1): 135-146,404.
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierachy gated LSTM[J]. Proceedings of the CSEE, 2021, 41(1): 135-146,404.
[42]
陈嘉俊, 刘波, 林伟伟, 等. 基于Transformer的时间序列预测方法综述[J]. 计算机科学, 2025, 52(6): 96-105.
CHEN Jiajun, LIU Bo, LIN Weiwei, et al. Survey of transformer-based time series forecasting methods[J]. Computer Science, 2025, 52(6): 96-105.
[43]
BOTTIEAU J, WANG Y, DE GRÈVE Z, et al. Interpretable transformer model for capturing regime switching effects of real-time electricity prices[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2162-2176.
[44]
XU Y, ZHU D. Deep learning-based risk prediction in power sector financial management using transformer and actor-critic reinforcement learning[J]. IEEE Access, 2024, 12: 137729-137745.
[45]
孙欣, 王思敏, 谢敬东, 等. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431.
Abstract
随着多元化电力市场的建设,电价影响因素日益增加,市场环境变化也更加剧烈.为提高市场短期电价的预测精度,提出一种考虑多种电价影响因素的改进Transformer-粒子群优化(PSO)算法短期电价预测方法.首先,在考虑历史电价、负荷的基础上进一步分析电价形成的相关因素,利用自相关函数分析电价的多周期特性并在此基础上调整输入序列,克服了仅采用历史数据以及经验调整输入序列导致预测精度受限的问题.其次,结合长短期记忆(LSTM)、自注意力机制与多层注意力机制并采用多输入结构建立改进Transformer模型,进一步提升LSTM模型捕获不同时间步信息间的长短期依赖关系的能力,克服LSTM的信息利用瓶颈,适应包括历史电价及多种电价成因的复杂多序列输入.此外,还利用PSO智能算法搜索模型不同学习阶段的最佳学习率克服手动调整学习率的局限性.最后,采用PJM市场电价进行算例分析,结果表明所提短期电价预测模型能应用于电价影响因素多、变化剧烈的市场环境,并有效提升短期电价预测精度.
SUN Xin, WANG Simin, XIE Jingdong, et al. Improved transformer-PSO short-term electricity price prediction method considering multidimensional influencing factors[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431.
[46]
张鹏飞, 胡博, 胡展硕, 等. 基于STD-ST-Former的现货电价长步时空预测[J/OL]. 中国电机工程学报, 1-23[2024-07-19]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20240621006&dbname=CJFD&dbcode=CJFQ.
ZHANG Pengfei, HU Bo, HU Zhanshuo, et al. Long step spatial-temporal prediction of spot electricity price using dual channel ST-former framework based on seasonal trend decomposition[J/OL]. Proceedings of the CSEE, 1-23 [2024-07-19]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20240621006&dbname=CJFD&dbcode=CJFQ.
[47]
ABATE G D, HALDRUP N. Space-time modeling of electricity spot prices[J]. The Energy Journal, 2017, 38(5): 175-196.
[48]
吉兴全, 曾若梅, 张玉敏, 等. 基于注意力机制的CNN-LSTM短期电价预测[J]. 电力系统保护与控制, 2022, 50(17): 125-132.
JI Xingquan, ZENG Ruomei, ZHANG Yumin, et al. CNN-LSTM short-term electricity price prediction based on an attention mechanism[J]. Power System Protection and Control, 2022, 50(17): 125-132.
[49]
陈宇聪, 白晓清. 考虑时序二维变化的日前市场电价预测模型[J]. 电力系统及其自动化学报, 2024, 36(7): 22-29.
CHEN Yucong, BAI Xiaoqing. Forecasting model of day-ahead market electricity price considering 2D variation of time series[J]. Proceedings of the CSU-EPSA, 2024, 36(7): 22-29.
[50]
YANG Z, CE L, LIAN L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods[J]. Applied Energy, 2017, 190: 291-305.
[51]
HUANG C J, SHEN Y, CHEN Y H, et al. A novel hybrid deep neural network model for short-term electricity price forecasting[J]. International Journal of Energy Research, 2021, 45(2): 2511-2532.
[52]
郭雪丽, 华大鹏, 包鹏宇, 等. 一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法[J]. 电力科学与技术学报, 2024, 39(2): 35-43.
GUO Xueli, HUA Dapeng, BAO Pengyu, et al. A short-term electricity price forecasting method based on improved VMD-PSO-CNN-LSTM[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 35-43.
[53]
赵欣. 基于注意力机制的CNN-BiLSTM日前电价预测[J]. 电工技术, 2024(12): 135-138,142.
ZHAO Xin. CNN-BiLSTM day-ahead electricity price prediction based on attention mechanism[J]. Electric Engineering, 2024(12): 135-138,142.
[54]
许越, 李强, 崔晖. 基于MIC-EEMD-改进Informer的含高比例清洁能源与储能的电力市场短期电价多步预测[J]. 电网技术, 2024, 48(3): 949-958.
XU Yue, LI Qiang, CUI Hui. Short-term multi-step price prediction for the electricity market with a high proportion of clean energy and energy storage based on MIC-EEMD-improved Informer[J]. Power System Technology, 2024, 48(3): 949-958.
[55]
SU H, PENG X, LIU H, et al. Multi-step-ahead electricity price forecasting based on temporal graph convolutional network[J]. Mathematics, 2022, 10(14): 2366.
[56]
魏步晗, 鲍刚, 李振华. 基于支持向量回归预测模型考虑天气因素和分时电价因素的短期电力负荷预测[J]. 电网与清洁能源, 2023, 39(11): 9-19.
WEI Buhan, BAO Gang, LI Zhenhua. Short-term electricity load forecasting based on support vector regression forecasting model considering weather factors and time-of-use tariff factors[J]. Power System and Clean Energy, 2023, 39(11): 9-19.
[57]
QIU X, SUGANTHAN P N, AMARATUNGA G A J. Short-term electricity price forecasting with empirical mode decomposition based ensemble kernel machines[J]. Procedia Computer Science, 2017, 108: 1308-1317.
[58]
王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11): 109-115.
WANG Jixuan, DENG Bin, WANG Jiang. Short-term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Proceedings of the CSU-EPSA, 2020, 32(11): 109-115.
[59]
CHAI S, LI Q, ABEDIN M Z, et al. Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives[J]. Research in International Business and Finance, 2024, 67: 102132.
[60]
安俊秀, 万里浪. 时间序列非平稳性及分布偏移的研究综述[J]. 微电子学与计算机, 2025, 42(8): 1-9.
AN Junxiu, WAN Lilang. Survey on the non-stationarity and distribution shift of time series[J]. Microelectronics & Com-puter, 2025, 42(8): 1-9.
[61]
张玉敏, 孙猛, 吉兴全, 等. 基于二次分解和 ATT-CNN-LSTM-MLR 组合模型的短期电价预测方法[J]. 智慧电力, 2024, 52(12):65-72.
ZHANG Yumin, SUN Meng, JI Xingquan, et al. Short-term electricity price forecasting method based on quadratic decomposition and ATT-CNN-LSTM-MLR combined model[J]. Smart Power, 2024, 52(12):65-72.

Funding

Beijing Natural Science Foundation(L242009)
Science and Technology Project of China Datang Technology Innovation Co., Ltd.(DTKC-2024-20595)
PDF(20197 KB)

Accesses

Citation

Detail

Sections
Recommended

/