PDF(5729 KB)
Key Technologies, Current Status and Development Trends of High-Altitude Wind Power Generation
HAN Shuang,LIU Shan
Distributed Energy ›› 2024, Vol. 9 ›› Issue (1) : 1-9.
PDF(5729 KB)
PDF(5729 KB)
Key Technologies, Current Status and Development Trends of High-Altitude Wind Power Generation
High altitude wind energy is a clean energy source with abundant reserves and wide distribution. High altitude wind power systems are used to convert high altitude wind energy into electrical energy by means of a tethered aircraft device. Compared with traditional wind power generation, high-altitude wind power generation has the advantages of high-power generation efficiency, strong stability, and fewer restrictions on site selection. However, problems such as the difficulty of breaking through the stabilization and control technology of high-altitude wind power generation and the difficulty of obtaining manufacturing materials have also constrained the development of high-altitude wind power generation. Combined with the current actual development of high-altitude wind power generation, it summarizes and refines the types of high-altitude wind power generation systems, key technologies, development status, problems, and development trends. Firstly, around the design of high-altitude wind power generation system, three kinds of high-altitude wind power generation system design technologies are introduced and their respective advantages and disadvantages are elaborated; then, three key technologies in the high-altitude wind power generation system are proposed and discussed in detail. Finally, the research direction and development prospect of the development and application of high-altitude wind power generation technology are discussed, aiming to provide reference, and thinking for the future research of high-altitude wind power generation.
high-altitude wind energy / high-altitude wind power / tethered kites / tethered aircraft / tethered floatplane
| [1] |
薛桁,朱瑞兆,杨振斌,等. 中国风能资源贮量估算[J]. 太阳能学报,2001, 22(2): 167-170.
|
| [2] |
郑崇伟,潘静. 全球海域风能资源评估及等级区划[J]. 自然资源学报,2012, 27(3): 364-371.
|
| [3] |
阎洁,张永蕊,张浩. 区域风电场群集中式功率预测系统设计与应用[J]. 分布式能源,2022, 7(1): 28-36.
|
| [4] |
雷旭,马鹏飞,宋智帅,等. 计及风电预测误差的柔性负荷日内调度模型[J]. 发电技术,2022, 43(3): 485-491.
|
| [5] |
郑婷婷,单小雨,马继涛,等. 寒潮天气对风电运行和功率预测的影响分析[J]. 内蒙古电力技术,2023, 41(4): 8-12.
|
| [6] |
俞增盛,吴俊. 高空风力发电技术与产业前景综述[J]. 上海节能,2017(7): 379-382.
|
| [7] |
廖顺宝,刘凯,李泽辉. 中国风能资源空间分布的估算[J]. 地球信息科学,2008, 10(5): 551-556.
|
| [8] |
|
| [9] |
|
| [10] |
邵垒,毛虹霖,邢胜,等. 高空风力发电发展现状及关键技术研究综述[J]. 新能源进展,2020, 8(6): 477-484.
|
| [11] |
刘耀广,王耀坤,万志强,等. 系留悬浮式风力发电技术的研究进展与展望[J]. 航空工程进展,2021, 12(4): 36-43.
|
| [12] |
高金兰,毋玉,李卓. 高空风力发电飞行器类型研究[J]. 国外电子测量技术,2019, 38(9): 107-111.
|
| [13] |
|
| [14] |
|
| [15] |
王若钦,严德,李柳青,等. 切风模式风力发电飞行器的进展与挑战[J]. 航空工程进展,2018, 9(2): 139-146.
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Altaeros Energies. Giant inflatable wind turbine to soar to 300 metres[EB/OL]. (2014-03-21) [2023-06-02].
|
| [22] |
|
| [23] |
马洪忠,水尊师,魏东辉. 飞行控制技术面临的挑战与发展[J]. 导航定位与授时,2014, 1(2): 1-6.
|
| [24] |
袁昌盛,付金华. 国际上微型飞行器的研究进展与关键问题[J]. 航空兵器,2005(6): 50-53.
|
| [25] |
陈宗基,张汝麟,张平,等. 飞行器控制面临的机遇与挑战[J]. 自动化学报,2013, 39(6): 703-710.
|
| [26] |
王美仙,李明,张子军. 飞行器控制律设计方法发展综述[J]. 飞行力学,2007(2): 1-4.
|
| [27] |
|
| [28] |
|
| [29] |
杨永强,马云鹏,武哲. 高空浮空器蒙皮材料特性分析与组合优化[J]. 北京航空航天大学学报,2014, 40(3): 333-337.
|
| [30] |
黄迪,赵海涛,邱野,等. 平流层飞艇蒙皮强度建模与仿真研究[J]. 计算机仿真,2013, 30(1): 150-153.
|
| [31] |
赵达,刘东旭,孙康文,等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报,2016, 37(1): 45-56
|
| [32] |
|
| [33] |
张盛开,赵玉鹏. 高空气球弹性系留绳的张力分析[J]. 力学与实践,1979, 1(3): 40-42.
|
| [34] |
王亚伟,贾月红,陈智谦,等. 飞艇系留系统静态与动态仿真研究[J]. 航天返回与遥感,2012, 33(2): 93-99.
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
许国东,叶杭冶,解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学,2018, 20(3): 44-50.
|
| [39] |
|
| [40] |
李斌,张海超,白雪峰,等. 大型风电场测风数据全生命周期的探讨[J]. 分布式能源,2017, 2(4): 40-46.
|
| [41] |
|
| [42] |
|
| [43] |
李辉,胡姚刚,唐显虎,等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报,2010, 30(33): 103-109.
|
| [44] |
付忠广,王丽平,戈志华,等. 采用主成分分析法综合评价电站机组的运行状态[J]. 动力工程,2008, 28(4): 548-551.
|
| [45] |
娄清辉,牛洪海,陈俊,等. 海上多平台互联综合能源系统能效评估指标研究[J]. 分布式能源,2021, 6(1): 14-20.
|
| [46] |
王志国,马一太,杨昭,等. 风力发电机组性能分析的模糊综合评判方法[J]. 太阳能学报,2004, 25(2): 177-181.
|
| [47] |
梁颖,方瑞明. 基于SCADA和支持向量回归的风电机组状态在线评估方法[J]. 电力系统自动化,2013, 37(14): 7-12, 31.
|
| [48] |
李俊卿,胡晓东,马阳硕,等. 基于合作博弈和区间划分的风电机组状态评价[J]. 智慧电力,2022, 50(1): 7-13.
|
| [49] |
肖利坤. 国内高空风力发电技术应用现状[J]. 农村电气化,2023(7): 66-68.
|
| [50] |
|
| [51] |
|
/
| 〈 |
|
〉 |