Secondary Regulation Control Method of Voltage and Frequency for Isolated Island Microgrid Based on VSG

YANG Pengwei,CHANG Yuanyuan,REN Zheng

Distributed Energy ›› 2024, Vol. 9 ›› Issue (1) : 19-25.

PDF(6876 KB)
PDF(6876 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (1) : 19-25. DOI: 10.16513/j.2096-2185.DE.2409103
Basic Research

Secondary Regulation Control Method of Voltage and Frequency for Isolated Island Microgrid Based on VSG

Author information +
History +

Abstract

During the operation of an independent microgrid, a discrepancy may arise between the maximum allowable output power controlled by a traditional virtual synchronous generator (VSG) and the power consumed by the system load. This will cause system capacity overload. If the discrepancy is significant, it can lead to voltage and frequency overrunning, posing a threat to the safe operation of the system. In order to mitigate the impact of this issue on the safe operation of the system, a self-recovery control method is proposed based on the VSG control strategy and analysis of voltage and frequency deviation causes. This method aims to achieve secondary regulation of voltage and frequency during independent microgrid operation, and achieve real-time dynamic regulation of system frequency and output power. Finally, the feasibility and effectiveness of the above control method are verified by building a simulation model in Matlab/Simulink software.

Key words

secondary frequency regulation / virtual synchronous generator (VSG) / secondary voltage regulation

Cite this article

Download Citations
Pengwei YANG , Yuanyuan CHANG , Zheng REN. Secondary Regulation Control Method of Voltage and Frequency for Isolated Island Microgrid Based on VSG[J]. Distributed Energy Resources. 2024, 9(1): 19-25 https://doi.org/10.16513/j.2096-2185.DE.2409103

References

[1]
国家电网公司. “碳达峰、碳中和”行动方案[ER/OL]. (2021-03-01)[2023-11-5]
[2]
刘旻超. 微网VSG逆变器离并网无缝切换控制策略研究[D]. 哈尔滨:哈尔滨工业大学,2019.
LIU Minchao. Research on seamless switching control strategy of microgrid VSG inverter between on-grid and off-grid [D]. Harbin: Harbin Institute of Technology, 2019.
[3]
马肃. 孤岛式交流微电网储能系统的控制策略[D]. 北京:北京交通大学,2021.
MA Su. Control strategy of islanded AC microgrid energy storage system [D]. Beijing: Beijing Jiaotong University, 2021.
[4]
尹昌洁,权楠,苏凯,等. 我国分布式能源发展现状及展望[J]. 分布式能源2022, 7(2): 1-7.
YIN Changjie, QUAN Nan, SU Kai, et al. Status and outlook of distributed energy development in China[J]. Distributed Energy, 2022, 7(2): 1-7.
[5]
刘建伟,李学斌,刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术2022, 43(3): 476-484.
LIU Jianwei, LI Xuebin, LIU Xiaoou. Distributed power access and energy storage configuration in active distribution network[J]. Power Generation Technology, 2022, 43(3): 476-484.
[6]
方磊,薛云霞,池宇琪,等. 分布式储能运行规划一体的多目标选址定容方法[J]. 智慧电力2022, 50(11): 1-8.
FANG Lei, XUE Yunxia, CHI Yuqi, et al. Multi-objective location and capacity determination method for distributed battery energy storage system considering operational planning[J]. Smart Power, 2022, 50(11): 1-8.
[7]
CUI X, LU X, ZHANG K. An otimized control model of battery energy storage systems for primary frequency response[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). Chengdu, China: IEEE, 2019: 3190-3193.
[8]
李斌,宝海龙,郭力. 光储微电网孤岛系统的储能控制策略[J]. 电力自动化设备2014, 34(3): 8-15.
LI Bin, BAO Hailong, GUO Li. Strategy of energy storage control for islanded microgrid with photovoltaic and energy storage systems [J]. Electric Power Automation Equipment, 2014, 34 (3): 8-15.
[9]
PHOTOVOLTAICS D G, STORAGE E. IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces[J]. IEEE Standards Association, 2018, 1547: 1547-2018.
[10]
曾妍,陈杰,钟锦邓,等. 交直流混合微电网关键技术综述[J]. 电气开关2023, 61(3): 1-4, 8.
ZENG Yan, CHEN Jie, ZHONG Jindeng, et al. Overview of key technologies of AC-DC hybrid microgrid [J]. Electrical Switch, 2023, 61(3): 1-4, 8.
[11]
张从越,窦晓波,何国鑫,等. 适用于中低压配电网的VSG多机协同鲁棒运行控制方法[J]. 电力自动化设备2020, 40(9): 64-76.
ZHANG Congyue, DOU Xiaobo, HE Guoxin, et al. Cooperative robust operation control method of multi-VSG available for low- and medium-voltage distribution network [J]. Electric Power Automation Equipment, 2020, 40(9): 64-76.
[12]
李晖,刘栋,姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报2021, 41(18): 6245-6259.
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality [J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[13]
赵恩盛,韩杨,周思宇,等. 微电网惯量与阻尼模拟技术综述及展望[J]. 中国电机工程学报2022, 42(4): 1413-1428.
ZHAO Ensheng, HAN Yang, ZHOU Siyu, et al. Review and prospect of inertia and damping simulation technologies of microgrids [J]. Proceedings of the CSEE, 2022, 42(4): 1413-1428.
[14]
许振宇,陈殷,石梦璇,等. 基于一致性算法的并联虚拟同步机系统小信号模型分析[J]. 中国电机工程学报2022, 42(7): 2427-2438.
XU Zhenyu, CHEN Yin, SHI Mengxuan, et al. Small-signal analysis of consensus-algorithm-based parallel virtual synchronization generators system [J]. Proceedings of the CSEE, 2022, 42(7): 2427-2438.
[15]
马俊杰,李永刚,李建文,等. 独立微网下频率和电压自恢复的二次调节及功率分配控制方法[J]. 现代电力2022, 39(3): 363-370.
MA Junjie, LI Yonggang, LI Jianwen, et al. A secondary control strategy for frequency and voltage recovery and power sharing control method in island microgrid [J]. Modern Electric Power, 2022, 39(3): 363-370.
[16]
KIM Y, KIM E, MOON S. Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid[J]. IEEE Transactions on Power Systems, 2017, 32(1): 544-551.
[17]
张宇华,赵晓轲,方艺翔. 独立微网中虚拟同步发电机的频率自恢复控制策略[J]. 电网技术2019, 43(6): 2125-2131.
ZHANG Yuhua, ZHAO Xiaoke, FANG Yixiang. Research on frequency self-recovery control for virtual synchronous generator in island microgrid [J]. Power System Technology, 2019, 43(6): 2125-2131.
[18]
DENG Y, TAO Y, CHEN G, et al. Enhanced power flow control for grid-connected droop-controlled inverters with improved stability[J]. IEEE Transactions on Industrial Electronics, 2016, 64(7): 5919-5929.
[19]
ALSAFRAN A S, DANIELS M W. Adaptive virtual impedance consensus control for reactive power sharing[C]//Kansas Power and Energy Conference (KPEC). Manhattan, KS, USA: IEEE, 2020: 1-6.
[20]
MAHAJAN T, POTDAR M S. An Improved strategy for distributed generation control and power sharing in islanded microgrid[C]//2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). Bangalore, India: IEEE, 2020: 133-136.
[21]
ROSSO R, ENGELKEN S, LISERRE M. Robust stability analysis of synchronverters operating in parallel[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11309-11319.
[22]
SHUAI Z, HUANG W, SHEN Z J, et al. Active power oscillation and suppression techniques between two parallel synchronverters during load fluctuations[J]. IEEE Transactions on Power Electronics, 2019, 35(4): 4127-4142.
[23]
WANG F, ZHANG L, FENG X. An adaptive control strategy for virtual synchronous generator [J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5124-5133.
[24]
吕志鹏,盛万兴,钟庆昌,等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报2014, 34(16): 2591-2603.
Zhipeng, SHENG Wanxing, ZHONG Qingchang, et al. Virtual synchronous generator and its application in micro-grid [J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603.
PDF(6876 KB)

Accesses

Citation

Detail

Sections
Recommended

/