PDF(11611 KB)
Surface Solar Radiation Forecast Using Quadratic Weather Classification Method
YANG Jiahao,ZHANG Lian,LIANG Fazheng,YANG Yujie,ZHANG Wei
Distributed Energy ›› 2024, Vol. 9 ›› Issue (1) : 54-63.
PDF(11611 KB)
PDF(11611 KB)
Surface Solar Radiation Forecast Using Quadratic Weather Classification Method
To improve the surface solar radiation forecasting accuracy in complicated weathers and to reduce the time-consuming cost, this paper proposes a method that using the China Meteorological Administration's weather classification criteria, to classify the historical meteorological data of Baiyun District, Guangzhou, into different weather types to forecast the surface solar radiation in sub models using support vector regression (SVR). Considering that the weather types are many, by analyzing the features of each sub model with extreme gradient boosting (XGBoost) algorithm and using Mann-Whitney test, series with similar feature importance are merged, thus achieving the secondary weather classification and reducing the complexity of forecasting model. Forecasting result by the model proposed shows that all the correlation coefficient, accuracy rate and qualification rate for the 12 successive months have exceeded the requirement of evaluation criteria, which guarantees a high accuracy. Besides, it totally consumes 10.633 hours to forecast, promising a faster forecasting method compared with the 13~34 hours of other models, which meets the demand for timely solar radiation forecasting in photovoltaic power plants.
surface solar radiation / weather classification / support vector regression (SVR) / extreme gradient boosting (XGBoost) / forecast
| [1] |
李忠财,杨义根,陈晨,等. 基于“双碳”目标下我国电力行业低碳建设管理的探讨[J]. 现代工业经济和信息化,2023, 13(7): 160-162.
|
| [2] |
|
| [3] |
姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报,2022, 43(10): 524-535.
|
| [4] |
邹才能,熊波,李士祥,等. 碳中和背景世界能源转型与中国式现代化的能源革命[J/OL]. 石油科技论坛:1-20[2023-11-10].
|
| [5] |
国家能源局. 2023年1—7月全国电力工业统计数据[EB/OL]. (2023-08-17)[2023-09-02]
|
| [6] |
陈凡,李智,丁津津,等. 考虑光伏机理与数据驱动结合的短期功率预测[J]. 科学技术与工程,2023, 23(20): 8686-8692.
|
| [7] |
董存,王铮,白捷予,等. 光伏发电功率超短期预测方法综述[J]. 高电压技术,2023, 49(7): 2938-2951.
|
| [8] |
中华人民共和国住房和城乡建设部. 光伏发电站设计规范:GB 50797—2012 [S]. 北京:中国标准出版社,2012.
|
| [9] |
宋子昊. 分布式光伏发电影响因素综述[J]. 河南科技,2020, 39(32): 136-139.
|
| [10] |
刘洋. 光伏发电系统中影响发电量因素分析[J]. 四川水力发电,2022, 41(1): 27-30.
|
| [11] |
胡雪凯,时珉,胡文平,等. 光伏电站功率预测影响因素分析及准确率提升方法研究[J]. 河北电力技术,2020, 39(2): 1-6, 14.
|
| [12] |
代倩,段善旭,蔡涛,等. 基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J]. 中国电机工程学报,2011, 31(34): 28-35.
|
| [13] |
周勇. 逐日太阳辐射估算模型及室外计算辐射研究[D]. 西安:西安建筑科技大学,2021.
|
| [14] |
鲁玉军,周世豪,胡小勇. 基于BP神经网络和小波神经网络的太阳辐射强度预测[J]. 软件工程,2023, 26(1): 5-8, 4.
|
| [15] |
|
| [16] |
王香云,申彦波,李利秋. 中国太阳能资源领域标准的制定综述[J]. 太阳能,2020(12): 17-23.
|
| [17] |
张蕊,李安燚,刘世岩,等. 基于波动特征提取下云层分型的短期光伏发电功率预测方法[J/OL]. 太阳能学报:1-13[2023-11-09].
|
| [18] |
|
| [19] |
|
| [20] |
臧海祥,程礼临,刘玲,等. 基于数据驱动的太阳辐射估计和预测研究与展望[J]. 电力系统自动化,2021, 45(11): 170-183.
|
| [21] |
王飞,米增强,甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报,2013, 33(34): 75-82, 14.
|
| [22] |
王鹏翔,沈娟,王菁旸,等. 基于PCA-LMD-WOA-ELM的短期光伏功率预测[J]. 智慧电力,2022, 50(6): 72-78.
|
| [23] |
全国气象防灾减灾标准化技术委员会(SAC/TC 345).公共气象服务:GB/T 22164—2017 [S]. 北京:中国标准出版社,2017.
|
| [24] |
World Meteorological Organization (2008) Guide to inst-ruments and methods of observation[J/OL]. Accessed 21 June 2020.
|
| [25] |
|
| [26] |
全国气象防灾减灾标准化技术委员会(SAC/TC 345).降水量等级:GB/T 28592—2012 [S]. 北京:中国标准出版社,2012.
|
| [27] |
张东海,李忠燕,丁立国,等. 影响光伏发电功率的气象因子分析及其预测检验[J]. 沙漠与绿洲气象,2023, 17(3): 157-164.
|
| [28] |
张淑花,李新功,李奇虎,等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理,2022, 45(3): 734-745.
|
| [29] |
李小军,辛晓洲,彭志晴. 2003~2012年中国地表太阳辐射时空变化及其影响因子[J]. 太阳能学报,2017, 38(11): 3057-3066.
|
| [30] |
|
| [31] |
全国电网运行与控制标准化技术委员会(SAC/TC 446).调度侧风电或光伏功率预测系统技术要求:GB/T 40607—2021[S]. 北京:中国标准出版社,2021.
|
/
| 〈 |
|
〉 |