Ultra-Short-Term Prediction of Wind Power Based on VMD-PE-MulitiBiLSTM

CHEN Yeye,LI Yao,LI Handong

Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 1-7.

PDF(6510 KB)
PDF(6510 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 1-7. DOI: 10.16513/j.2096-2185.DE.2409201
Basic Research

Ultra-Short-Term Prediction of Wind Power Based on VMD-PE-MulitiBiLSTM

Author information +
History +

Abstract

In order to reduce the error of ultra-short-term wind power prediction, an ultra-short-term prediction model of wind power based on variational mode decomposition (VMD), permutation entropy (PE) and multilayer bidirectional long short-term memory (MultiBiLSTM) is proposed. Firstly, the historical wind power sequence is decomposed into several sub-modal components using VMD decomposition algorithm, and the sub-modal wind power components are reconstructed according to the calculated PE value. Then, the feature attention (FA) mechanism and deep residual cascade network (DRCnet) are used to construct a MulitiBiLSTM prediction model to predict the reconstructed subsequences. Finally, the predicted value of the sub-sequence is reconstructed to obtain the final prediction result of wind power. The datum set of a wind field in Guizhou province is used to verify the proposed method and compare it with other prediction models. The results show that using VMD-PE-MultiBiLSTM model can significantly reduce the prediction error of wind power.

Key words

ultra-short-term prediction of wind power / variational mode decomposition (VMD) / permutation entropy (PE) / multilayer bidirectional long short-term memory (MultiBiLSTM)

Cite this article

Download Citations
Yeye CHEN , Yao LI , Handong LI. Ultra-Short-Term Prediction of Wind Power Based on VMD-PE-MulitiBiLSTM[J]. Distributed Energy Resources. 2024, 9(2): 1-7 https://doi.org/10.16513/j.2096-2185.DE.2409201

References

[1]
ZHANG F, LI N, LI L, et al. A local semi-supervised ensemble learning strategy for the data-driven soft sensor of the power prediction in wind power generation[J]. Fuel, 2023, 333: 126435.
[2]
WANG Y, HU Q, LI L, et al. Approaches to wind power curve modeling: A review and discussion[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109422.
[3]
陶然,张涛,冉华军,等. 计及可用输电能力的风电并网系统中STATCOM的双层优化配置[J]. 智慧电力2022, 50(12): 86-93.
TAO Ran, ZHANG Tao, RAN Huajun, et al. Bi-level optimal configuration of STATCOM in wind power grid-connected system considering available transfer capacity[J]. Smart Power, 2022, 50(12): 86-93.
[4]
徐彬,薛帅,高厚磊,等. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术2022, 43(2): 227-235.
XU Bin, XUE Shuai, GAO Houlei, et al. Development status and prospects of offshore wind farms and it's key technology[J]. Power Generation Technology, 2022, 43(2): 227-235.
[5]
黎静华,桑川川,甘一夫,等. 风电功率预测技术研究综述[J]. 现代电力2017, 34(3): 1-11.
LI Jinghua, SANG Chuanchuan, GAN Yifu, et al. A review of researches on wind power forecasting technology[J]. Modern Electric Power, 2017, 34(3): 1-11.
[6]
DALTON A, BEKKER B. Exogenous atmospheric variables as wind speed predictors in machine learning[J]. Applied Energy, 2022, 319: 119257.
[7]
CATALÃO J P S, POUSINHO H M I, MENDES V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable Energy, 2011, 36(4): 1245-1251.
[8]
LIU Y, LI D, WAN S, et al. A long short-term memory-based model for greenhouse climate prediction[J]. International Journal of Intelligent Systems, 2022, 37(1): 135-151.
[9]
PENG T, ZHANG C, ZHOU J, et al. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221: 119887.
[10]
JOURABLOO A, LIU X. Pose-invariant face alignment via CNN-based dense 3D model fitting[J]. International Journal of Computer Vision, 2017, 124(4): 187-203.
[11]
WU Q, GUAN F, LV C, et al. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM[J]. IET Renewable Power Generation, 2021, 15(5): 1019-1029.
[12]
GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610.
[13]
KO M S, LEE K, KIM J K, et al. Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1321-1335.
[14]
谢丽蓉,王斌,包洪印,等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报2021, 42(7): 290-296.
XIE Lirong, WANG Bin, BAO Hongyin, et al. Ultra-short term wind power forecast based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 290-296.
[15]
YU M, NIU D, GAO T, et al. A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism[J]. Energy, 2023, 269: 126738.
[16]
HAN Y, MI L, SHEN L, et al. A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting[J]. Applied Energy, 2022, 312: 118777.
[17]
张亚刚,赵云鹏,王思祺. 基于EVMD和布谷鸟算法的短期风功率区间预测[J]. 太阳能学报2022, 43(8): 292-299.
ZHANG Yagang, ZHAO Yunpeng, WANG Siqi. Short-term wind power interval prediction based on EVMD and Cuckoo algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 292-299.
[18]
沙骏,徐雨森,刘冲冲,等. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力2022, 55(12): 61-68.
SHA Jun, XU Yusen, LIU Chongchong, et al. Short-term wind power prediction based on variational mode decomposition and quantile convolutional recurrent neural networks[J]. Electric Power, 2022, 55(12): 61-68.
[19]
武小梅,林翔,谢旭泉,等. 基于VMD-PE和优化相关向量机的短期风电功率预测[J]. 太阳能学报2018, 39(11): 3277-3285.
WU Xiaomei, LIN Xiang, XIE Xuquan, et al. Short-term wind power prediction based on variational mode factory-permutation entropy and optimized correlation vector machine[J]. Acta Energiae Solaris Sinica, 2018, 39(11): 3277-3285.
[20]
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[21]
BANDT C, POMPE B. Permutation entropy: A natural complexity measure of time series[J]. Physical Review Letters, 2002, 88(17): 174102.
[22]
XU Z, LI C, YANG Y. Fault diagnosis of rolling bearings using an improved multi-scale convolutional neural network with feature attention mechanism[J]. ISA Transactions, 2021, 110: 379-393.

Funding

National Natural Science Foundation of China(52167007)
PDF(6510 KB)

Accesses

Citation

Detail

Sections
Recommended

/