Impact of Different Types of New Energy Access on Microgrid Frequency

LI Shuyong,CAI Haiqing,SHEN Na,GU Haohan,GUO Changxing

Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 8-18.

PDF(7653 KB)
PDF(7653 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 8-18. DOI: 10.16513/j.2096-2185.DE.2409202
Basic Research

Impact of Different Types of New Energy Access on Microgrid Frequency

Author information +
History +

Abstract

In order to build a new energy system and a new power system with new energy as the main body, different types of new energy have joined the power system, and the influence of the addition of a high proportion of new energy on the power system has become increasingly apparent. Based on the era background of national efforts to develop new energy, combined with the location advantages of small hydropower and wind power in the mountainous area of Guangdong province, using theory, simulation and other research methods, the frequency variation law of multi-energy complementary microgrid island composed of different kinds of new energy such as photovoltaic, wind power, small hydropower was studied in the initial stage. Firstly, the variation of the amplitude and frequency of small hydropower, wind power and photovoltaic power generation as separate distributed energy sources were respectively connected to the microgrid island operation. It was found that only the photovoltaic microgrid had better island operation stability. Then, the influence of the addition of small hydropower and photovoltaic on the amplitude and frequency change of wind power microgrid in the initial island was discussed. It was found that photovoltaic had a supporting effect on the whole working condition of wind power microgrid, while small hydropower had a greater supporting effect under specific working conditions. Finally, the influence of amplitude and frequency changes in the initial phase of the wind-light-water multi-energy complementary microgrid islanding was analyzed. The results showed that the wind-light-water multi-energy new energy had better operation stability under a certain ratio.

Key words

new energy / distributed generation / microgrid / isolated island / frequency

Cite this article

Download Citations
Shuyong LI , Haiqing CAI , Na SHEN , et al . Impact of Different Types of New Energy Access on Microgrid Frequency[J]. Distributed Energy Resources. 2024, 9(2): 8-18 https://doi.org/10.16513/j.2096-2185.DE.2409202

References

[1]
薛文博,许艳玲,王金南,等. 全国火电行业大气污染物排放对空气质量的影响[J]. 中国环境科学2016, 36(5): 1281-1288.
XUE Wenbo, XU Yanling, WANG Jinnan, et al. Ambient air quality in pact of emissions from thermal power industry[J]. China Environmental Science 2016, 36(5): 1281-1288.
[2]
孙秀飞,荣亚君,王宝娜,等. 基于冒泡算法的含分布式电源配电网孤岛划分[J]. 分布式能源2018. 3(6): 31-37.
SUN Xiufei, Rong Yajun, WANG Baona, et al. Bubble algorithm based island division for distribution network with distributed generation[J]. Distributed Energy, 2018, 3(6): 31-37.
[3]
马晶梅,王新影. 我国能源碳排放与经济增长脱钩关系研究[J]. 企业经济2015, 424(12): 10-15.
MA Jingmei, WANG Xinying. Study on the relationship between energy carbon emissions and economic growth in China[J]. Enterprise Economy, 2015(12): 10-15.
[4]
赵永椿,马斯鸣,杨建平,等. 燃煤电厂污染物超净排放的发展及现状[J]. 煤炭学报2015, 40(11): 2629-2640.
ZHAO Yongchun, MA Siming, YANG Jianping, et al. Statue of ultra-low emission technology in coal-fired power plant[J]. Journal of China Coal Society, 2015, 40(11): 2629-2640.
[5]
王超,苏伟,钟国彬,等. 超级电容器及其在新能源领域的应用[J]. 广东电力2015, 28(12): 46-52.
WANG Chao, SU Wei, ZHONG Guobin, et al. Super capacitor and its application in new energy field[J]. Guangdong Electric power, 2015, 28(12): 46-52.
[6]
CONG Ronggang. An optimization model for renewable energy generation and its application in China: A perspective of maximumutilization[J]. Renewable and Sustainable Energy Reviews, 2013(17): 94-103.
[7]
林泽坤,彭显刚,武小梅,等. 大规模风电地区电网电压稳定研究综述[J]. 广东电力2014, 27(2): 31-37.
LIN Zekun, PENG Xiangang, WU Xiaomei, et al. Summary on voltage stability of power grid in large scale wind power area[J]. Guangdong Electric Power, 2014, 27(2): 31-37.
[8]
梁琛,王维洲,马喜平,等. 基于随机潮流的高比例新能源接入配电网的极限线损分析[J]. 智慧电力2022, 50(12): 34-40, 78.
LIANG Chen, WANG Weizhou, MA Xiping, et al. Analysis on limit line loss in high proportion of renewable energy distribution network based on stochastic power flow[J]. Smart Power, 2022, 50(12): 34-40, 78.
[9]
杨俊,张峰,崔文婷,等. 新能源接入对传统电网的影响及应对策略[J]. 电源技术2020, 44(5): 757-761.
YANG Jun, ZHANG Feng, CUl Wenting, et al. Influence of new energy access on traditional grid and countermeasures[J]. Chinese Journal of Power Sources, 2020, 44(5): 757-761.
[10]
杨万开,王兴国,王书扬. 渝鄂柔性直流输电接入电网高频谐振与抑制分析[J]. 发电技术2022, 43(3): 492-500.
YANG Wankai, WANG Xingguo, WANG Shuyang. Analysis of high frequency resonance and suppression in Yu to E VSC-HVDC project connected to power grid[J]. Power Generation Technology, 2022, 43(3): 492-500.
[11]
赵国栋. 新能源接入对智能配电网的影响及对策[J]. 集成电路应用2023, 40(12): 212-213.
ZHAO Guodong. Impact of new energy access on smart distribution network and countermeasures[J]. Application of IC, 2023, 40(12): 212-213.
[12]
乐程毅,贝斌斌. 新能源接入对电网稳定性影响及应对[J]. 湘潭大学学报(自然科学版), 2022, 44(6): 121-126.
YUE Chengyi, BEI Binbin. The impact of new energy integration on the stability of the power grid and its countermeasures[J]. Journal of Xiangtan University(Natural Science Edition), 2022, 44(6): 121-126.
[13]
郎紫惜,武志刚. 大规模海上风电接入对电网频率跌落影响研究[J]. 电气自动化2024, 46(1): 75-77, 82.
LANG Zixi, WU Zhigang. Research on the impact of large-scale offshore wind power integration on grid frequency drop[J]. Electrical Automation, 2024, 46(1): 75-77, 82.
[14]
张淑兴,马驰,杨志学,等. 基于深度确定性策略梯度算法的风光储系统联合调度策略[J]. 中国电力2023, 56(2): 68-76.
ZHANG Shuxing, MA Chi, YANG Zhixue, et al. Deep deterministic policy gradient algorithm based wind-photovoltaic-storage hybrid system joint dispatch[J]. Electric Power, 2023, 56(2): 68-76.
[15]
付玉,高强,田禾,等. 独立式风光储系统联合控制策略[J]. 能源工程2022, 42(2): 28-33.
FU Yu, GAO Qiang, TIAN He, et al. Joint control strategy for independent wind-solar-stroage system[J]. Energy Engineering, 2022, 42(2): 28-33.
[16]
吴倩,王洋,王琳媛,等. 计及波动平抑与经济性的风光储系统中混合储能容量优化配置[J]. 电测与仪表2022, 59(4): 112-119.
WU Qian, WANG Yang, WANG Linyuan, et al. Optimal capacity allocation of hybrid energy storage system in wind-solar-battery system considering fluctuation smoothing and economy[J]. Electrical Measurement & Instrumentation, 2022, 59(4): 112-119.
[17]
刘志刚,伍也凡,肖振锋,等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网2021, 4(5): 464-475.
LlU Zhigang, WU Yefan, XIAO Zhenfeng, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475.
[18]
郄朝辉,李威,姜涛,等. 电网频率校正控制方法在高比例新能源电网的适应性[J/OL]. 电网技术,1-9[2023-06-09][2023-09-03].
QIAO Chaohui, LI Wei, JIANG Tao, et al. Adaptability of grid frequency correction control method in high ratio new energy grid[J/OL]. Power System Technology, 1-9[2023-06-09][2023-09-03].
[19]
常烨骙,刘娆,巴宇,等. 新能源高占比的特高压电网频率控制模式及性能评价[J]. 电网技术2019, 43(2): 621-631.
CHANG Yekui, LIU Rao, BA Yu, et al. Frequency control mode and performance evaluation of ultra-high voltage power grid with high proportion of new energy[J]. Power System Technology, 2019, 43(2): 621-631.
[20]
王凡. 含高比例新能源的受端电网频率稳定控制研究[D]. 北京:华北电力大学,2021.
WANG Fan. Research on frequency stability control of receiving end power grid with large penetraticn of renewable energy[D]. Beijing: North China Electric Power University, 2021.
[21]
顾于昊,陈宇昕,施浩楠. 区域电源孤岛运行下电压频率稳定性控制方法[J]. 系统仿真技术2023, 19(3): 231-235, 282.
GU Yuhao, CHEN Yuxin, SHI Haonan. Voltage frequency stability control method under islanded operation of regional power supply[J]. System Simulation Technology, 2023, 19(3): 231-235, 282.
[22]
LIU Zhifeng, ZHAO Shixiang, ZHANG Xijia, et al. Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method[J]. Renewable Energy, 2023, 219: 119379.
[23]
ABDELGHANY M B, MARIANI V, LIUZZA D, et al. Hierarchical model predictive control for islanded and grid-connected microgrids with wind generation and hydrogen energy storage systems[J]. International Journal of Hydrogen Energy, 2024, 51, 595-610.
[24]
ELKADEEM M R, KOTB K M, ABIDO M A, et al. Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of sokhna industrial zone[J]. Energy, 2024, 289: 29816.
[25]
TIAN Zengyao, SHAO Yangdi, SUN Mingze, et al. Dynamic stability analysis of power grid in high proportion new energy access scenario based on deep learning[J]. Energy Reports, 2022, 8, (6): 172-182.
[26]
徐兴发,陈志峰,王智东,等. 缺储能风光微电网孤岛初期幅频特性[J]. 广东电力2019, 32(5): 22-28.
XU Xingfa, CHEN Zhifeng, WANG Zhidong, et al. Initial amplitude-frequency characteristics of lsolated island in lack of energy storage microgrid[J]. Guangdong Electric Power, 2019, 32(5): 22-28.
[27]
蔡斌军,何雍,李朝旗. 基于Boost变换器的D-PMSG风力发电系统MPPT控制[J]. 微特电机2023, 51(3): 59-62.
CAl Binjun, HE Yong, Ll Chaoqi. D-PMSG wind power generation system MPPT control based on boost converter[J]. Small & Special Electrical Machines, 2023, 51(3): 59-62.
[28]
杨亚,张兰红,谢生清. 基于改进黏菌优化算法的光伏MPPT方法[J]. 自动化与仪表2023, 38(3): 1-5.
YANG Ya, ZHANG Lanhong, XIE Shengqing. Photovoltaic MPPT method based on lmproved slime mold algorithm[J]. Automation & Instrumentation, 2023, 38(3): 1-5.
[29]
陈璟华,黄泽杭,杨苓,等. 多源多负荷直流微电网的稳定裕度分析及控制参数优化设计方法[J/OL]. 太阳能学报,1-9(2023-07-28)[2023-09-03].
CHEN Jinghua, HUANG Zehang, YANG Ling, et al. Stability margin analysis and control parameter optimization design method for multi-source and multi load DC microgrids[J/OL]. Acta Energiae Solaris Sinica, 1-9(2023-07-28)[2023-09-03].
[30]
马礼谦. 交直流混合微电网的稳定供电和调度优化研究[D]. 上海:东华大学,2023.
MA Liqian. Research on stable powersupply and dispatchop-timization of ac/dc hybrid microgrid[D]. Shanghai: Donghua University, 2023.
[31]
赵卓立,杨苹,蔡泽祥,等. 含风电孤立中压微电网暂态电压稳定协同控制策略[J]. 电力自动化设备2015, 35(10): 1-9.
ZHAO Zhuoli, YANG Ping, CAI Zexiang, et al. Cooperative control of transient voltage stability for islanded medium-voltage microgrid with power[J]. Electric Power Automation Equipment, 2015, 35(10): 1-9.

Funding

Guangdong Provincial Key Laboratory of Intelligent Operation and Control for New Energy Power System(GPKLIOCNEPS-2022-KF-05)
PDF(7653 KB)

Accesses

Citation

Detail

Sections
Recommended

/