PDF(9435 KB)
Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm
YAN Zhaokang,MA Gang,FENG Rui,XU Jianwei,SHEN Jingwen
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 30-38.
PDF(9435 KB)
PDF(9435 KB)
Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm
Accurate prediction of short-term multiple energy loads is a prerequisite to ensure the reliable and efficient operation of integrated energy system. For this reason, a convolutional neural network-long short-term memory (CNN-LSTM) model for integrated energy system multivariate load prediction based on genetic algorithm particle swarm optimization (GAPSO) is proposed. Firstly, Pearson's coefficient is used to describe the correlation between the influencing factors and the load. Secondly, GAPSO algorithm is used to improve the LSTM model, and then a one-dimensional CNN is constructed to extract the hourly higher-order features, and the extracted implicit higher-order features are partitioned by the improved long short-term memory (LSTM) modeling. The multivariate load forecasting model based on GAPSO-CNN-LSTM for integrated energy system is constructed through quantile regression modeling. Finally, the load data of integrated energy system of Arizona State University Tempe Campus is used as an example, and the results show that the improved algorithm has a better convergence ability and the model has a higher prediction accuracy.
long short-term memory (LSTM) / convolutional neural networks (CNN) / genetic algorithm particle swarm optimization (GAPSO) / integrated energy systems / load forecasting
| [1] |
何桂雄,金璐,李克成,等. 基于改进DaNN的综合能源系统多能负荷预测[J]. 电力工程技术,2021, 40(6): 25-33.
|
| [2] |
|
| [3] |
罗凤章,张旭,杨欣,等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术,2021, 47(1): 23-32.
|
| [4] |
|
| [5] |
刘雨竹,徐楠. 基于混沌时间序列的IGA-WLSSVR短期负荷预测模型[J]. 控制工程,2021, 28(2): 245-250.
|
| [6] |
万昆,柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术,2012, 36(11): 77-81.
|
| [7] |
邓带雨,李坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术,2020, 44(2): 593-602.
|
| [8] |
蔡秋娜,潮铸,苏炳洪,等. 基于一种新型鲁棒损失的神经网络短期负荷预测方法[J]. 电网技术,2020, 44(11): 4132-4139.
|
| [9] |
|
| [10] |
谢敏,邓佳,梁吉祥,等. 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术,2017, 41(1): 210-214.
|
| [11] |
赵佩,代业明. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术,2020, 44(4): 1325-1332.
|
| [12] |
田浩含,撖奥洋,于立涛,等. 基于GRA-LSTM神经网络的区域综合能源系统多元负荷短期预测模型[J]. 广东电力,2020, 33(5): 44-51.
|
| [13] |
尹春杰,肖发达,李鹏飞,等. 基于LSTM神经网络的区域微网短期负荷预测[J]. 计算机与现代化,2022, 320(4): 7-11.
|
| [14] |
陈卓,孙龙祥. 基于深度学习LSTM网络的短期电力负荷预测方法[J]. 电子技术,2018, 47(1): 39-41.
|
| [15] |
孙庆凯,王小君,张义志,等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化,2021, 45(5): 63-70.
|
| [16] |
|
| [17] |
National Renewable Energy Laboratory. National solar radiation database[DB/OL]. (2022-12-09) [2023-06-02].
|
| [18] |
孙景钌,胡长洪,项烨鋆,等. 基于多核模糊C均值聚类的配电网短期负荷预测[J]. 浙江电力,2022, 41(3): 65-71.
|
| [19] |
魏震波,余雷. 基于FFT, DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力,2022, 50(3): 37-43.
|
| [20] |
张重远,罗世豪,岳浩天,等. 基于Mel时频谱-卷积神经网络的变压器铁芯声纹模式识别方法[J]. 高电压技术,2020, 46(2): 413-422.
|
| [21] |
王琪凯,熊永康,陈瑛,等. 基于Attention机制优化CNN-seq2seq模型的非侵入式负荷监测[J]. 电力系统及其自动化学报,2022, 34(12): 27-34, 42.
|
| [22] |
亢猛,钟祎勍,石鑫,等. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术,2023, 44(1): 25-35.
|
| [23] |
张涌新,沈弘,马静. 综合能源系统负荷特性分析及应用研究[J]. 电力建设,2018, 39(9): 18-29.
|
/
| 〈 |
|
〉 |