Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm

YAN Zhaokang,MA Gang,FENG Rui,XU Jianwei,SHEN Jingwen

Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 30-38.

PDF(9435 KB)
PDF(9435 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 30-38. DOI: 10.16513/j.2096-2185.DE.2409204
Basic Research

Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm

Author information +
History +

Abstract

Accurate prediction of short-term multiple energy loads is a prerequisite to ensure the reliable and efficient operation of integrated energy system. For this reason, a convolutional neural network-long short-term memory (CNN-LSTM) model for integrated energy system multivariate load prediction based on genetic algorithm particle swarm optimization (GAPSO) is proposed. Firstly, Pearson's coefficient is used to describe the correlation between the influencing factors and the load. Secondly, GAPSO algorithm is used to improve the LSTM model, and then a one-dimensional CNN is constructed to extract the hourly higher-order features, and the extracted implicit higher-order features are partitioned by the improved long short-term memory (LSTM) modeling. The multivariate load forecasting model based on GAPSO-CNN-LSTM for integrated energy system is constructed through quantile regression modeling. Finally, the load data of integrated energy system of Arizona State University Tempe Campus is used as an example, and the results show that the improved algorithm has a better convergence ability and the model has a higher prediction accuracy.

Key words

long short-term memory (LSTM) / convolutional neural networks (CNN) / genetic algorithm particle swarm optimization (GAPSO) / integrated energy systems / load forecasting

Cite this article

Download Citations
Zhaokang YAN , Gang MA , Rui FENG , et al . Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm[J]. Distributed Energy Resources. 2024, 9(2): 30-38 https://doi.org/10.16513/j.2096-2185.DE.2409204

References

[1]
何桂雄,金璐,李克成,等. 基于改进DaNN的综合能源系统多能负荷预测[J]. 电力工程技术2021, 40(6): 25-33.
HE Guixiong, JIN Lu, LI Kecheng, et al. Multiple energy load forecasting of integrated energy system based on improved DaNN[J]. Electric Power Engineering Technology, 2021, 40(6): 25-33.
[2]
NIU D X, YU M, SUN L J, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy, 2022, 313: 118801.
[3]
罗凤章,张旭,杨欣,等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术2021, 47(1): 23-32.
LUO Fengzhang, ZHANG Xu, YANG Xin, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32.
[4]
WANG Y, GAN D, ZHANG N, et al. Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(5): 1200-1209.
[5]
刘雨竹,徐楠. 基于混沌时间序列的IGA-WLSSVR短期负荷预测模型[J]. 控制工程2021, 28(2): 245-250.
LIU Yuzhu, XU Nan. Short-term load forecasting model using IGA-WLSSVR based on chaotic time series[J]. Control Engineering of China, 2021, 28(2): 245-250.
[6]
万昆,柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术2012, 36(11): 77-81.
WAN Kun, LIU Ruiyu. Application of interval time-series vector autoregressive model in short-term load forecasting[J]. Power System Technology, 2012, 36(11): 77-81.
[7]
邓带雨,李坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术2020, 44(2): 593-602.
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2): 593-602.
[8]
蔡秋娜,潮铸,苏炳洪,等. 基于一种新型鲁棒损失的神经网络短期负荷预测方法[J]. 电网技术2020, 44(11): 4132-4139.
CAI Qiuna, CHAO Zhu, SU Binghong, et al. Short-term load forecasting method based on a novel robust loss neural network algorithm [J]. Power System Technology, 2020, 44(11): 4132-4139.
[9]
DIETRICH B, WALTHER J, WEIGOLD M, et al. Machine learning based very short term load forecasting of machine tools [J]. Applied Energy, 2020, 276: 115440.
[10]
谢敏,邓佳,梁吉祥,等. 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术2017, 41(1): 210-214.
XIE Min, DENG Jia, LIANG Jixiang, et al. Cooling load forecasting method based on support vector machine optimized with entropy and variable accuracy roughness set[J]. Power System Technology, 2017, 41(1): 210-214.
[11]
赵佩,代业明. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术2020, 44(4): 1325-1332.
ZHAO Pei, DAI Yeming. Power load forecasting of SVM based on real-time price and weighted grey relational projection algorithm[J]. Power System Technology, 2020, 44(4): 1325-1332.
[12]
田浩含,撖奥洋,于立涛,等. 基于GRA-LSTM神经网络的区域综合能源系统多元负荷短期预测模型[J]. 广东电力2020, 33(5): 44-51.
TIAN Haohan, HAN Aoyang, YU Litao, et al. Research on multi-load short-term forecasting model of regional integrated energy system based on GRA-LSTM neural network[J]. Guangdong Electric Power, 2020, 33(5): 44-51.
[13]
尹春杰,肖发达,李鹏飞,等. 基于LSTM神经网络的区域微网短期负荷预测[J]. 计算机与现代化2022, 320(4): 7-11.
YIN Chunjie, XIAO Fada, LI Pengfei, et al. Short-term load forecasting of regional microgrid based on LSTM neural network[J]. Computer and Modernization, 2022, 320(4): 7-11.
[14]
陈卓,孙龙祥. 基于深度学习LSTM网络的短期电力负荷预测方法[J]. 电子技术2018, 47(1): 39-41.
CHEN Zhuo, SUN Longxiang. Short-term electrical load forecasting based on deep learning LSTM networks[J]. Electronic Technology, 2018, 47(1): 39-41.
[15]
孙庆凯,王小君,张义志,等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化2021, 45(5): 63-70.
SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 40(6): 25-33.
[16]
GE L, LI Y, YAN J, et al. Short-term load prediction of integrated energy system with wavelet neural network model based on improved particle swarm optimization and chaos optimization algorithm[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(6): 1490-1499.
[17]
National Renewable Energy Laboratory. National solar radiation database[DB/OL]. (2022-12-09) [2023-06-02].
[18]
孙景钌,胡长洪,项烨鋆,等. 基于多核模糊C均值聚类的配电网短期负荷预测[J]. 浙江电力2022, 41(3): 65-71.
SUN Jingliao, HU Changhong, XIANG Yeyun, et al. Short-term load forecasting of distribution networks based on multiple kernel fuzzy C-means clustering[J]. Zhejiang Electric Power, 2022, 41(3): 65-71.
[19]
魏震波,余雷. 基于FFT, DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力2022, 50(3): 37-43.
WEI Zhenbo, YU Lei. Short-term load forecasting method based on FFT, DC-HC and LSTM[J]. Smart Power, 2022, 50(3): 37-43.
[20]
张重远,罗世豪,岳浩天,等. 基于Mel时频谱-卷积神经网络的变压器铁芯声纹模式识别方法[J]. 高电压技术2020, 46(2): 413-422.
ZHANG Zhongyuan, LUO Shihao, YUE Haotian, et al. Pattern recognition of acoustic signals of transformer core based on Mel-spectrum and CNN[J]. High Voltage Engineering, 2020, 46(2): 413-422.
[21]
王琪凯,熊永康,陈瑛,等. 基于Attention机制优化CNN-seq2seq模型的非侵入式负荷监测[J]. 电力系统及其自动化学报2022, 34(12): 27-34, 42.
WANG Qikai, XIONG Yongkang, CHEN Ying, et al. Non-intrusive load monitoring based on CNN-seq2seq model optimized by Attention mechanism[J]. Proceedings of the CSU-EPSA, 2022, 34(12): 27-34, 42.
[22]
亢猛,钟祎勍,石鑫,等. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术2023, 44(1): 25-35.
KANG Meng, ZHONG Yiqing, SHI Xin, et al. Research on two-stage optimization approach of community integrated energy system considering load supply reliability[J]. Power Generation Technology, 2023, 44(1): 25-35.
[23]
张涌新,沈弘,马静. 综合能源系统负荷特性分析及应用研究[J]. 电力建设2018, 39(9): 18-29.
ZHANG Yongxin, SHEN Hong, MA Jing. Load characteristic analysis and application research on integrated energy system[J]. Electric Power Construction, 2018, 39(9): 18-29.

Funding

Jiangsu Key R&D Program (Industry Foresight and Key Core Technologies)(BE2020081)
PDF(9435 KB)

Accesses

Citation

Detail

Sections
Recommended

/