PDF(16500 KB)
Intraday Prediction Model for PV Power Considering Samples of Different Weather Types
FU Xuejiao,LYU Kexin,WU Linlin,LIU Hui,ZHANG Yangfan,LI Yilin,YE Lin
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 39-47.
PDF(16500 KB)
PDF(16500 KB)
Intraday Prediction Model for PV Power Considering Samples of Different Weather Types
Solar energy has the advantages of being clean, safe, and renewable, and photovoltaic (PV) power generation can reduce resource consumption and contribute to sustainable development. However, PV power is easily affected by weather, and the prediction of PV power for different weather types is also a research difficulty. This study proceeds to apply synthetic minority over-sampling technique (SMOTE) and machine learning for PV power prediction under different weather types. Firstly, the meteorological factors that have the greatest impact on PV power are selected by the Pearson's correlation coefficient method. Then the sunshine duration is calculated based on the meteorological factors with a greater degree of importance, and the weather is classified as sunny, cloudy or cloudy, and snow-covered days by setting a threshold for the number of hours of sunshine, and then the samples under various weather types are expanded by the SMOTE technique. Finally, the PV power prediction model is constructed by various machine learning algorithms for different weather scenarios and before and after data expansion. Through case validation, it can be seen that the algorithm proposed in this paper is able to classify different weather types, and provides a solution to the sample imbalance problem of PV power prediction under different weather types, which improves the prediction accuracy of PV power under different weather scenarios.
photovoltaic power generation / power prediction / machine learning / synthetic minority over-sampling technique (SMOTE) / weather types
| [1] |
|
| [2] |
尹昌洁,权楠,苏凯,等. 我国分布式能源发展现状及展望[J]. 分布式能源,2022, 7(2): 1-7.
|
| [3] |
董霞威,马长啸,黄海,等. 分布式光伏项目国企开发模式及风险研究[J]. 分布式能源,2021, 6(6): 24-30.
|
| [4] |
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术,2022, 43(3): 392-404.
|
| [5] |
|
| [6] |
焦嘉凝,柳璐,张天宇,等. 台风灾害下多阶段协同的受端电网弹性提升策略[J]. 电力系统自动化,2023, 47(12): 9-18.
|
| [7] |
钟海旺,张广伦,程通,等. 美国得州2021年极寒天气停电事故分析及启示[J]. 电力系统自动化,2022, 46(6): 1-9.
|
| [8] |
|
| [9] |
王海燕,刘佳康,邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力,2023, 51(3): 46-52.
|
| [10] |
陶仁峰,李凤婷,李永东,等. 基于云层分布规律与太阳光跟踪的光伏电站MPPT策略[J]. 电力系统自动化,2018, 42(5): 25-33.
|
| [11] |
白捷予,董存,王铮,等. 考虑云层遮挡的光伏发电功率超短期预测技术[J]. 高电压技术,2023, 49(1): 159-168.
|
| [12] |
赵波,廖坤,邓春宇,等. 基于卷积神经学习的光伏板积灰状态识别与分析[J]. 中国电机工程学报,2019, 39(23): 6981-6989, 7111.
|
| [13] |
孟安波,陈嘉铭,黎湛联,等. 基于相似日理论和CSO-WGPR的短期光伏发电功率预测[J]. 高电压技术,2021, 47(4): 1176-1184.
|
| [14] |
叶林,李奕霖,裴铭,等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报,2023, 43(2): 543-555.
|
| [15] |
李振坤,王法顺,郭维一,等. 极端天气下智能配电网的弹性评估[J]. 电力系统自动化,2020, 44(9): 60-68.
|
| [16] |
刘灏,商峻,毕天姝,等. 基于实测数据的电网频率信号特征分析与提取方法[J]. 电力系统自动化,2023, 47(10): 135-144.
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
陈金富,朱乔木,石东源,等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报,2019, 39(7): 2093-2106.
|
| [22] |
|
/
| 〈 |
|
〉 |