Source-Load Balance Method of Load Surge Areas in Large City Power Grids

YANG Liping,ZHENG Shuwei,XI Shaoqing,ZHAO Xinchen,WANG Wei

Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 74-80.

PDF(2050 KB)
PDF(2050 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 74-80. DOI: 10.16513/j.2096-2185.DE.2409208
Application Technology

Source-Load Balance Method of Load Surge Areas in Large City Power Grids

Author information +
History +

Abstract

Aim to achieve source-load balance for large cities where the power grid experiences significant load surges, coordinated scheduling is often employed. However, the uncertainty of load variations greatly impacts the effectiveness of such scheduling methods. In response to this situation, a method for achieving source-load balance in areas with significant load surges in large city power grids is proposed. Based on the load characteristics of these areas, a real-time scheduling framework for source-load balance is established, and the framework uses the division between the day-ahead time scale and the intra-day time scale as a reference point. Control strategies for source-load balance are developed within this framework, and a source-load balance scheduling model is established for solving, aiming to derive the optimal solution as the best balancing approach. Case study analysis results demonstrate that the proposed source-load balance method has a good load scheduling effect, ensuring a high level of energy utilization efficiency and exhibiting good overall adaptability.

Key words

large cities / power grid load / surge areas / source-load balance / real-time scheduling

Cite this article

Download Citations
Liping YANG , Shuwei ZHENG , Shaoqing XI , et al . Source-Load Balance Method of Load Surge Areas in Large City Power Grids[J]. Distributed Energy Resources. 2024, 9(2): 74-80 https://doi.org/10.16513/j.2096-2185.DE.2409208

References

[1]
武倩. 绿色可持续视角下中国皮革产业低碳转型与发展模式构建[J]. 中国皮革2021, 50(12): 126-130.
WU Qian. Construction of low-carbon transformation and development model of China's leather industry from perspective of green sustainability[J]. China Leather, 2021, 50(12): 126-130.
[2]
林毅,林伟伟,张菁娴,等. 计及调频效益的微电网源-荷动态频率调整研究[J]. 可再生能源2023, 41(5): 660-666.
LIN Yi, LIN Weiwei, ZHANG Jingxian, et al. Research on source-load dynamic frequency adjustment of microgrid considering frequency modulation benefits[J]. Renewable Energy Resources, 2023, 41(5): 660-666.
[3]
蔡浩阳,王维庆,范添圆,等. 考虑负荷聚合商的源荷双侧合作协同运行策略[J]. 科学技术与工程2023, 23(4): 1565-1572.
CAI Haoyang, WANG Weiqing, FAN Tianyuan, et al. Bilateral cooperative operation strategy of source load considering load aggregator[J]. Science Technology and Engineering, 2023, 23(4): 1565-1572.
[4]
陶鹏,张冰玉,韩桂楠,等. 计及源荷双侧风险管理的光储微网两阶段低碳运行优化研究[J]. 智慧电力2023, 51(11): 1-6.
TAO Peng, ZHANG Bingyu, HAN Guinan, et al. Two-stage low carbon operation optimization of photovoltaic storage microgrid considering risk management of both source and load sides[J]. Smart Power, 2023, 51(11): 1-6.
[5]
苏向敬,刘一航,张知宇,等. 计及源荷不确定影响的不平衡配电网两阶段优化[J]. 电力系统保护与控制2022, 50(23): 94-103.
SU Xiangjing, LIU Yihang, ZHANG Zhiyu, et al. Two-stage optimization of unbalanced distribution networks considering impacts of DG and load uncertainties[J]. Power System Protection and Control, 2022, 50(23): 94-103.
[6]
仓鹤鸣,蔺红. 基于电价联动的虚拟电厂源-荷协调经济性研究[J]. 现代电子技术2022, 45(23): 149-155.
CANG Heming, LIN Hong. Economic research on virtual power plant source-load coordination based on electricity price linkage[J]. Modern Electronics Technique, 2022, 45(23): 149-155.
[7]
孙骁强,张小奇,张光儒,等. 考虑跨区直流调峰的新能源参与电力平衡可信容量提升方法研究[J]. 电网技术2023, 47(3): 878-886.
SUN Xiaoqiang, ZHANG Xiaoqi, ZHANG Guangru, et al. Credible capacity improvement with new energy participating in power balance considering cross-regional DC peak shaving[J]. Power System Technology, 2023, 47(3): 878-886.
[8]
TABAK A, DUMAN S. Levy flight and fitness distance balance-based coyote optimization algorithm for effective automatic generation control of PV-based multi-area power systems[J]. Arabian Journal for Science and Engineering, 2022, 47(11): 14757-14788.
[9]
SHAYEGHI H, RAHNAMA A, BIZON N. TFODn-FOPI multi-stage controller design to maintain an islanded microgrid load-frequency balance considering responsive loads support[J]. IET Generation, Transmission & Distribution, 2023, 17(14): 3266-3285.
[10]
袁桂丽,刘培德,唐福斌,等. 计及绿色电力证书与碳交易制度的“源-荷”协调优化调度[J]. 太阳能学报2022, 43(6): 190-195.
YUAN Guili, LIU Peide, TANG Fubin, et al. Source-load coordination optimal scheduling considering green power certificate and carbon trading mechanisms[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 190-195.
[11]
黄欣,蒋凯,郇嘉嘉,等. 可再生能源消纳责任权重制下计及源荷储互动的电力市场均衡研究[J]. 现代电力2022, 39(3): 302-309.
HUANG Xin, JIANG Kai, XUN Jiajia, et al. Equilibrium analysis of microgrids in renewable portfolio standard-constrained spot market considering source-load-storage interaction[J]. Modern Electric Power, 2022, 39(3): 302-309.
[12]
亢丽君,王蓓蓓,薛必克,等. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报2022, 37(13): 3275-3288.
KANG Lijun, WANG Beibei, XUE Bike, et al. Research on the balance strategy for power grid with high proportion renewable energy considering the ramping scenario coverage[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3275-3288.
[13]
陈美玲,高岩. 计及源荷双侧不确定性的综合能源系统优化配置[J]. 上海理工大学学报2022, 44(1): 77-84, 102.
CHEN Meiling, GAO Yan. Optimal configuration of integrated energy system with uncertain generation and load[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(1): 77-84, 102.
[14]
刘志虹,盛万兴,杜松怀,等. 基于区域划分的农村有源配电网动态重构方法[J]. 农业工程学报2021, 37(20): 248-255.
LIU Zhihong, SHENG Wanxing, DU Songhuai, et al. Dynamic reconfiguration method of rural active distribution network based on regional division[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 248-255.
[15]
赵冬梅,陶然,马泰屹,等. 考虑可靠性与源荷双侧不确定性的多目标需求响应模型[J]. 华北电力大学学报(自然科学版), 2021, 48(5): 1-14.
ZHAO Dongmei, TAO Ran, MA Taiyi, et al. Multi-objective demand response dispatching model considering reliability and source-load side uncertainty[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(5): 1-14.
[16]
李湃,方保民,祁太元,等. 基于源-荷匹配的区域电网风/光/储容量配比优化方法[J]. 中国电力2022, 55(1): 46-54.
LI Pai, FANG Baomin, QI Taiyuan, et al. Capacity proportion optimization of wind, solar power and battery energy storage system for regional power grid based on source-load matching[J]. Electric Power, 2022, 55(1): 46-54.
[17]
张宁,朱昊,杨凌霄,等. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术2023, 43(5): 625-633.
ZHANG Ning, ZHU Hao, YANG Lingxiao, et al. Optimal scheduling strategy of multi-energy complementary virtual power plant considering renewable energy consumption[J]. Power Generation Technology, 2023, 43(5): 625-633.
[18]
郭凯,阿敏夫,雅斯太,等. 计及碳交易-绿证和储能成本的含风光发电的电力系统优化调度[J]. 内蒙古电力技术2023, 41(4): 1-7.
GUO Kai, Aminfu, Yasitai, et al. Optimized dispatching of power system including wind and solar power generation considering carbon trading-green certificate and energy storage cost[J]. Inner Mongolia Electric Power, 2023, 41(4): 1-7.
[19]
徐健玮,马刚,高丛,等. 基于风光场景生成的综合能源系统日前日内优化调度[J]. 分布式能源2022, 7(4): 18-27.
XU Jianwei, MA Gang, GAO Cong, et al. Day-ahead and intra-day optimal scheduling of integrated energy systems based on scenario generation[J]. Distributed Energy, 2022, 7(4): 18-27.
[20]
王灿,吴耀文,孙建军,等. 基于柔性多状态开关的主动配电网双层负荷均衡方法[J]. 电力系统自动化2021, 45(8): 77-85.
WANG Can, WU Yaowen, SUN Jianjun, et al. Bi-layer load balancing method in active distribution network based on flexible multi-state switch[J]. Automation of Electric Power Systems, 2021, 45(8): 77-85.

Funding

Science and Technology Project of State Grid Beijing Electric Power Research Institute(520223222002A)
PDF(2050 KB)

Accesses

Citation

Detail

Sections
Recommended

/