A Source-Load Multi-Timescale Energy-Saving Scheduling Approach for Power Systems Under Carbon Flow Emission Tracking

YANG Peng,TANG Ren,WU Jun

Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 81-88.

PDF(1387 KB)
PDF(1387 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (2) : 81-88. DOI: 10.16513/j.2096-2185.DE.2409209
Application Technology

A Source-Load Multi-Timescale Energy-Saving Scheduling Approach for Power Systems Under Carbon Flow Emission Tracking

Author information +
History +

Abstract

To promote energy saving and emission reduction during power system operation, the source-load multi-timescale energy-saving scheduling approach of power systems under carbon flow emission tracking is proposed. The fixed operation mode and the flexible operation mode of power systems under carbon flow emission tracking are analysed, and the capture level of the carbon capture equipment is adjusted through the flexible operation mode. Based on the operation modes of power systems under carbon flow emission tracking, a multi-timescale energy-saving scheduling model with pre-daily, intraday, and real-time timescale is constructed. The objective function of the scheduling model is the optimal cost of power systems, and the constraints are set. The improved multi-objective particle swarm algorithm or the standard particle swarm algorithm is adopted to solve the constructed multi-timescale scheduling model step by step, and the multi-timescale energy-saving scheduling is completed. The experimental results show that the method can effectively achieve the energy-saving and carbon reduction scheduling objectives of power systems based on resource scheduling advantages of power system source-load adjustability under different operating scenarios.

Key words

carbon flow emission tracking / multi-timescale / energy-saving scheduling / day-ahead scheduling / real-time scheduling

Cite this article

Download Citations
Peng YANG , Ren TANG , Jun WU. A Source-Load Multi-Timescale Energy-Saving Scheduling Approach for Power Systems Under Carbon Flow Emission Tracking[J]. Distributed Energy Resources. 2024, 9(2): 81-88 https://doi.org/10.16513/j.2096-2185.DE.2409209

References

[1]
周坤,许云飞,崔昊杨,等. 基于预测控制的多种新能源互补电力系统动态调度模型[J]. 现代电力2021, 38(3): 248-257.
ZHOU Kun, XU Yunfei, CUI Haoyang, et al. A predictive control based dynamic dispatch model for complementary power system containing multi-renewable energy sources[J]. Modern Electric Power, 2021, 38(3): 248-257.
[2]
郭凯,阿敏夫,雅斯太,等. 计及碳交易-绿证和储能成本的含风光发电的电力系统优化调度[J]. 内蒙古电力技术2023, 41(4): 1-7.
GUO Kai, Aminfu, Yasitai, et al. Optimized dispatching of power system including wind and solar power generation considering carbon trading-green certificate and energy storage cost[J]. Inner Mongolia Electric Power, 2023, 41(4): 1-7.
[3]
姜红丽,刘羽茜,冯一铭,等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术2022, 43(1): 54-64.
JIANG Hongli, LIU Yuxi, FENG Yiming, et al. Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J]. Power Generation Technology, 2022, 43(1): 54-64.
[4]
严中华,王建功,朱英刚,等. 考虑碳排放流理论的风-碳捕集-电转气联合新型中长期调度方式[J]. 智慧电力2022, 50(6): 14-21.
YAN Zhonghua, WANG Jiangong, ZHU Yinggang, et al. New medium-long term dispatching mode of wind-carbon capture-P2G combined system considering carbon emission flow theory[J]. Smart Power, 2022, 50(6): 14-21.
[5]
孙文文,何国庆. 基于能流图和碳流图的我国能源结构转型分析及展望[J]. 分布式能源2022, 7(4): 10-17.
SUN Wenwen, HE Guoqing. Analysis and prospect of China's energy structure transformation based on energy flow chart and carbon flow chart[J]. Distributed Energy, 2022, 7(4): 10-17.
[6]
黄煜,徐青山,夏元兴,等. 考虑自适应传输备用的含风电电力系统双层随机调度方法[J]. 电力系统自动化2021, 45(20): 29-37.
HUANG Yu, XU Qingshan, XIA Yuanxing, et al. Bi-level stochastic scheduling method for power system with wind power considering adaptive transmission reserve[J]. Automation of Electric Power Systems, 2021, 45(20): 29-37.
[7]
郝广涛,韩学山,梁军,等. 传统电力系统和高比例可再生能源电力系统调度与控制方法综述[J]. 电力系统及其自动化学报2020, 32(9): 10-19.
HAO Guangtao, HAN Xueshan, LIANG Jun, et al. Review of dispatch and control methods for tradition power system and high-rate renewable energy generation power system[J]. Proceedings of the CSU-EPSA, 2020, 32(9): 10-19.
[8]
张浩. 云计算环境下的电力任务节能调度方法研究[J]. 电力系统保护与控制2021, 49(13): 128-134.
ZHANG Hao. Research on power task energy saving scheduling method in cloud computing environment[J]. Power System Protection and Control, 2021, 49(13): 128-134.
[9]
陈厚合,茅文玲,张儒峰,等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制2021, 49(10): 1-11.
CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49(10): 1-11.
[10]
金力,房鑫炎,蔡振华,等. 考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略[J]. 电网技术2020, 44(10): 3641-3650.
JIN Li, FANG Xinyan, CAI Zhenhua, et al. Multiple time-scales source-storage-load coordination scheduling strategy of grid connected to energy storage power station considering characteristic distribution[J]. Power System Technology, 2020, 44(10): 3641-3650.
[11]
田丰,贾燕冰,任海泉,等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术2020, 44(9): 3346-3355.
TIAN Feng, JIA Yanbing, REN Haiquan, et al. “Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9): 3346-3355.
[12]
唐俊刺,李铁,皮俊波,等. 基于多主体博弈的配电网多时间尺度源荷智能调度方法[J]. 电子技术应用2022, 48(3): 68-72.
TANG Junci, LI Tie, PI Junbo, et al. Multi-time scale source and load intelligent scheduling method for distribution network based on multi-agent game[J]. Application of Electronic Technique, 2022, 48(3): 68-72.
[13]
崔杨,邓贵波,曾鹏,等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报2022, 42(16): 5869-5886, 6163.
CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163.
[14]
周任军,吴燕榕,潘轩,等. 考虑电热需求响应的区域综合能源系统储能容量优化配置[J]. 电力科学与技术学报2023, 38(1): 11-17.
ZHOU Renjun, WU Yanrong, PAN Xuan, et al. Optimal placement of energy storage in a regional integrated energy system considering electric and thermal demand responses[J]. Journal of Electric Power Science and Technology, 2023, 38(1): 11-17.
[15]
张祥宇,金召展,付媛,等. 基于频率变化极值时间的风电虚拟惯量约束与支撑控制[J]. 高电压技术2023, 49(6): 2491-2504.
ZHANG Xiangyu, JIN Zhaozhan, FU Yuan, et al. Virtual inertia constrain and support control of wind turbines based on variable frequency limit time[J]. High Voltage Engineering, 2023, 49(6): 2491-2504.
[16]
周磊,明庆永,袁全. 考虑需求响应及电能交互的多微电网优化调度[J]. 电工技术2023(2): 52-55.
ZHOU Lei, MING Qingyong, YUAN Quan. Optimal dispatch of multi-microgrid considering demand response and power interaction[J]. Electric Engineering, 2023(2): 52-55.
[17]
吴臻,刘军,谢胤喆,等. 含风电安全约束机组组合的旋转备用优化[J]. 电力系统及其自动化学报2015, 27(1): 86-91.
WU Zhen, LIU Jun, XIE Yinzhe, et al. Spinning reserve optimization in security constraint unit commitment with wind power[J]. Proceedings of the CSU-EPSA, 2015, 27(1): 86-91.
[18]
杨明,韩学山,李智,等. 扰动转移分布因子及风电对超前调度直流潮流约束的关键扰动分析[J]. 电力系统保护与控制2011, 39(13): 32-40.
YANG Ming, HAN Xueshan, LI Zhi, et al. Key disturbance analysis of the influence of disturbance shift distribution factor and wind power on the DC flow constraints of advance dispatch[J]. Power System Protection and Control, 2011, 39(13): 32-40.
[19]
延菲,张瑞祥,孙耀杰,等. 特征选择及数据质量对负荷识别算法的影响研究[J]. 复旦学报(自然科学版), 2021, 60(6): 811-816.
YAN Fei, ZHANG Ruixiang, SUN Yaojie, et al. Research on the influence of feature selection and data quality on load identification algorithm[J]. Journal of Fudan University(Natural Science), 2021, 60(6): 811-816.
[20]
赵力航,常伟光,杨敏,等. 电力市场环境下虚拟电厂两阶段能量经济优化调度[J]. 中国电力2022, 55(10): 14-22.
ZHAO Lihang, CHANG Weiguang, YANG Min, et al. Two-stage energy economic optimal dispatch of virtual power plant in deregulated electricity market[J]. Electric Power, 2022, 55(10): 14-22.
[21]
刘雨佳,樊艳芳. 计及5G基站储能和技术节能措施的虚拟电厂调度优化策略[J]. 电力系统及其自动化学报2022, 34(1): 8-15.
LIU Yujia, FAN Yanfang. Optimal scheduling strategy for virtual power plant considering 5G base station technology, energy-storage, and energy-saving measures[J]. Proceedings of the CSU-EPSA, 2022, 34(1): 8-15.
[22]
苏万华,邱俊松,邬斌扬,等. 基于运行特性和生命周期理论的综合能源系统优化方法[J]. 天津大学学报2022, 55(4): 371-382.
SU Wanhua, QIU Junsong, WU Binyang, et al. Integrated energy system optimization method based on the equipment operating characteristics and life cycle theory[J]. Journal of Tianjin University, 2022, 55(4): 371-382.
[23]
傅予,李铁. 安全可靠性约束下的微电网电能最优调度模型设计研究[J]. 电气传动2022, 52(7): 57-63.
FU Yu, LI Tie. Research on design of optimal scheduling model for microgrid electrical energy under the constraints of safety and reliability[J] Electric Drive, 2022, 52(7): 57-63.
[24]
崔屹峰,李珍国,贾清泉,等. 基于参数辨识与状态估计的温控负荷响应能力动态评估[J]. 电力系统自动化2021, 45(1): 150-158.
CUI Yifeng, LI Zhenguo, JIA Qingquan, et al. Dynamic evaluation of response potential of thermostatically controlled load based on parameter identification and state estimation[J]. Automation of Electric Power Systems, 2021, 45(1): 150-158.
PDF(1387 KB)

Accesses

Citation

Detail

Sections
Recommended

/