PDF(5903 KB)
Multi-Time Scale Optimization Scheduling for Microgrids Containing Electric Vehicle Clusters
YANG Kang,SHI Lushan,ZHOU Hang,WANG Zhaoyang,WANG Bolun,ZHOU Xia,TANG Hao
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 21-30.
PDF(5903 KB)
PDF(5903 KB)
Multi-Time Scale Optimization Scheduling for Microgrids Containing Electric Vehicle Clusters
When discharging, electric vehicles can serve as distributed energy storage units of the power grid to alleviate the power supply pressure of microgrids with high proportions of new energy integration. Capitalizing on the characteristics of time-of-use tariffs across multi-time scales, this study proposes a multi-time scale optimization scheduling method for microgrids that takes into account clusters of electric vehicles. In day-ahead scheduling phase, the equipment output such as internal energy storage, interruptible loads and transferable loads in the microgrid is optimized based on time of use tariffs; During intra-day optimization scheduling phase, electric vehicle clusters will be included in the energy scheduling of microgrids, and reasonable charging and discharging can be achieved by analyzing the scheduling potential of each electric vehicle cluster. To verify the effectiveness of the proposed scheme, electric vehicle clusters are selected to participate in microgrid energy scheduling based on variable time of use tariffs during peak, flat, and valley periods. The results show that the multi-time scale optimization scheduling for microgrids considering the participation of electric vehicle clusters can make full use of the energy storage resources of electric vehicle clusters and improve the flexibility and economy of microgrid scheduling operation.
microgrids / multi-time scale / electric vehicle cluster / time of use tariffs / optimization scheduling
| [1] |
肖浩,裴玮,孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化,2016, 40(18): 7-14, 55.
|
| [2] |
高赐威,张亮. 电动汽车充电对电网影响的综述[J]. 电网技术,2011, 35(2): 127-131.
|
| [3] |
朱辉,吕红芳,阳晓明. 基于多代理系统的微电网多目标优化调度[J]. 发电技术,2019, 40(6): 527-534.
|
| [4] |
|
| [5] |
杨洁,吴志强,范宏. 基于实时电价的含储能可再生能源系统协同调度策略[J]. 智慧电力,2023, 51(4): 46-53.
|
| [6] |
|
| [7] |
|
| [8] |
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术,2020, 41(1): 64-72.
|
| [9] |
林顺富,张琪,沈运帷,等. 考虑灵活性互济的跨区电网灵活性资源优化调度策略[J]. 电力建设,2023, 44(8): 71-81.
|
| [10] |
王敏,吕林,向月. 计及V2G价格激励的电动汽车削峰协同调度策略[J]. 电力自动化设备,2022, 42(4): 27-33, 85.
|
| [11] |
|
| [12] |
|
| [13] |
蔡黎,张权文,代妮娜,等. 规模化电动汽车接入主动配电网研究进展综述[J]. 智慧电力,2021, 49(6): 75-82.
|
| [14] |
檀勤良,代美,梅书凡. 考虑电动汽车碳配额及需求响应的电力系统调度研究[J]. 电网与清洁能源,2021, 37(7): 79-86.
|
| [15] |
赵星宇,胡俊杰. 集群电动汽车充电行为的深度强化学习优化方法[J]. 电网技术,2021, 45(6): 2319-2327.
|
| [16] |
卢芳,王晓梅,李勇钢,等. 考虑多种储能的微能源网多时间尺度协同调度[J]. 现代电力,2019, 36(5): 39-46.
|
| [17] |
崔明勇,王楚通,王玉翠,等. 独立模式下微网多能存储系统优化配置[J]. 电力系统自动化,2018, 42(4): 30-38, 54.
|
| [18] |
赵磊,曾芬钰,王霜,等. 基于经济性与环保性的微电网多目标优化调度研究[J]. 高压电器,2015, 51(6): 127-132.
|
| [19] |
陈奎,马子龙,周思宇,等. 电动汽车两阶段多目标有序充电策略研究[J]. 电力系统保护与控制,2020, 48(1): 65-72.
|
| [20] |
杨国清,罗航,王德意,等. 分时电价与电动汽车优化调度的主从博弈模型[J]. 电力系统及其自动化学报,2018, 30(10): 55-60.
|
| [21] |
朱心月,岳云涛,李炳华,等. 电动汽车有序充放电分群调度策略[J]. 科学技术与工程,2021, 21(19): 8023-8030.
|
| [22] |
郭思琪,袁越,张新松,等. 多时间尺度协调控制的独立微网能量管理策略[J]. 电工技术学报,2014, 29(2): 122-129.
|
| [23] |
康振南,程杉. 采用双层优化模型的电动汽车有序充放电策略研究[J]. 东北电力技术,2019, 40(3): 1-6.
|
| [24] |
刘柏岩. 基于需求响应的含换电站微电网经济调度策略研究[D]. 吉林:东北电力大学,2021.
|
| [25] |
卢少平,应黎明,王霞,等. 基于用户出行模拟的电动汽车快充站负荷预测及其优化调度[J]. 电力建设,2020, 41(11): 38-48.
|
| [26] |
李志伟,赵书强,刘应梅. 电动汽车分布式储能控制策略及应用[J]. 电网技术,2016, 40(2): 442-450.
|
/
| 〈 |
|
〉 |