Cooperative Control Strategy of Energy Storage Unit Considering Frequency Dead Zone

CHENG He,HAO Sipeng,MA Yuankai

Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 47-54.

PDF(4025 KB)
PDF(4025 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 47-54. DOI: 10.16513/j.2096-2185.DE.2409306
Basic Research

Cooperative Control Strategy of Energy Storage Unit Considering Frequency Dead Zone

Author information +
History +

Abstract

The continuous increase in the proportion of new energy grid connection has reduced the inertia of the power system, leading to a decrease in system frequency regulation capability. In response to this issue, research on the participation of energy storage in frequency regulation has been carried out. The participation of energy storage in frequency regulation is influenced by factors such as unit quantity, state of charge (SOC), and charge-discharge strategy. A coordinated control strategy for energy storage units considering frequency deadband is proposed. Energy storage units are grouped based on SOC consistency, and different groups independently execute droop control or virtual inertia control to simplify output control commands. Control command switching is based on system frequency deviation or frequency rate of change, with frequency deviation and rate-of-change deadbands set to reduce disturbances causing frequent charging and discharging of energy storage systems. Simulation verification using Matlab/Simulink shows that the proposed control strategy is simple to implement, can quickly respond to frequency regulation requirements, and can ensure the lifespan of energy storage batteries.

Key words

energy storage unit grouping / frequency regulation dead zone / positive and negative virtual inertia control / cooperative control / battery life

Cite this article

Download Citations
He CHENG , Sipeng HAO , Yuankai MA. Cooperative Control Strategy of Energy Storage Unit Considering Frequency Dead Zone[J]. Distributed Energy Resources. 2024, 9(3): 47-54 https://doi.org/10.16513/j.2096-2185.DE.2409306

References

[1]
国家能源局. 2023年前三季度可再生能源发展情况[EB/OL]. (2023-10-30) [2023-12-02]
[2]
赵熙临,林震宇,付波. 基于风机运行边界分析的电网频率控制方法[J]. 电网技术2020, 44(9): 3450-3457.
ZHAO Xilin, LIN Zhenyu, FU Bo. Power grid frequency control method based on fan operating boundary analysis [J]. Power System Technology, 2020, 44(9): 3450-3457.
[3]
徐政. 电力系统广义同步稳定性的物理机理与研究途径[J]. 电力自动化设备2020, 40(9): 3-9.
XU Zheng. Physical mechanism and research approach of generalized synchronous stability for power systems[J]. Electric Power Automation Equipment, 2020, 40(9): 3-9.
[4]
颜湘武,刘正男,张波,等. 具有同步发电机特性的并联逆变器小信号稳定性分析[J]. 电网技术2016, 40(3): 910-917.
YAN Xiangwu, LIU Zhengnan, ZHANG Bo, et al. Small-signal stability analysis of parallel inverters with synchronous generator characteristics[J]. Power System Technology, 2016, 40(3): 910-917.
[5]
丛晶,宋坤,鲁海威,等. 新能源电力系统中的储能技术研究综述[J]. 电工电能新技术2014, 33(3): 53-59.
CONG Jing, SONG Kun, LU Haiwei, et al. Review of energy storage technology for new energy power system[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3): 53-59.
[6]
杨水丽,李建林,李蓓,等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源2013, 29(2): 43-47.
YANG Shuili, LI Jianlin, LI Bei, et al. Advantages of battery energy storage system for frequency regulation[J]. Power System and Clean Energy, 2013, 29(2): 43-47.
[7]
李军徽,侯涛,穆钢,等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化2020, 44(19): 63-72.
LI Junhui, HOU Tao, MU Gang, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72.
[8]
张小莲,覃世球,张仰飞,等. 考虑储能荷电状态的风储联合调频控制策略[J]. 高电压术2023, 49(10): 4120-4130.
ZHANG Xiaolian, QIN Shiqiu, ZHANG Yangfei, et al. Wind turbine and storage joint frequency modulation control strategy considering energy storage state of charge[J]. High Voltage Engineering, 2023, 49(10): 4120-4130.
[9]
杨永辉,谢丽蓉,李佳明,等. 基于模糊控制的储能参与一次调频综合控制策略[J]. 智慧电力2023, 51(4): 38-45.
YANG Yonghui, XIE Lirong, LI Jiaming, et al. Integrated control strategy of energy storage participating in primary frequency regulation based on fuzzy control[J]. Smart Power, 2023, 51(4): 38-45.
[10]
杨德健,王鑫,严干贵,等. 计及调频死区的柔性风储联合频率控制策略[J]. 电工技术学报2023, 38(17): 4646-4656.
YANG Dejian, WANG Xin, YAN Gangui, et al. Flexible frequency regulation scheme of DFIG embed Battery Energy storage system considering deadbands[J]. Transactins of China Electrotechnical Society, 2023, 38(17): 4646-4656.
[11]
李璐瑶,赵熙临. 虑及SOC均衡的储能参与电网负荷频率控制方法[J/OL]. 武汉大学学报(工学版), 1-10[2024-02-17].
LI Luyao, ZHAO Xilin. Research on energy storage participating in power grid load frequency control considering SOC equalization[J/OL]. Engineering Journal of Wuhan University, 1-10[2024-02-17].
[12]
贺悝,谭庄熙,李欣然,等. 考虑荷电状态一致性的分布式储能电站一次调频控制策略[J]. 高电压技术2024, 50(2): 870-880.
HE Li, TAN Zhuangxi, LI Xinran, et al. Control strategy of primary frequency regulation for distributed energy storage stations considering SOC consensus[J/OL]. High Voltage Engineering, 2024, 50(2): 870-880.
[13]
何林轩,李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术2021, 10(5): 1679-1686.
HE Linxuan, LI Wenyan. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686.
[14]
王琦,郭钰锋,万杰,等. 适用于高风电渗透率电力系统的火电机组一次调频策略[J]. 中国电机工程学报2018, 38(4): 974-984.
WANG Qi, GUO Yufeng, WAN Jie, et al. Primary frequency regulation strategy of thermal units for a power system with high penetration wind power[J]. Proceedings of the CSEE, 2018, 38 (4): 974-984.
[15]
肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电2021, 50(6): 98-105.
XIAO Chunmei. Research on using electric energy storage to improve frequency regulation performance of thermal power units[J]. Thermal Power Generation, 2021, 50(6): 98-105.
[16]
李兆伟,方勇杰,李威,等. 电化学储能应用于电网频率安全防御三道防线的探讨[J]. 电力系统自动化2020, 44(8): 1-7.
LI Zhaowei, FANG Yongjie, LI Wei, et al. Discussion on application of electrochemical energy storage in three defense lines of power grid frequency[J]. Automation of Electric Power Systems, 2020, 44(8): 1-7.
[17]
李盼盼. 影响储能磷酸铁锂电池寿命因素分析[J]. 时代汽车2023(17): 142-144.
LI Panpan. Analysis of factors affecting the life of lithium iron phosphate batteries for energy storage[J]. Auto Time, 2023(17):142-144.
[18]
林加顺,周娟,吴乃豪,等. 一种高精度磷酸铁锂电池OCV-SOC曲线获取方法[J/OL]. 电源学报: 1-13[2023-11-18].
LIN Jiashun, ZHOU Juan, WU Naihao, et al. A high precision OCV-SOC curve acquisition method for LiFeO4 battery[J/OL]. Journal of Power Supply: 1-13[2023-11-18].
[19]
曾其权,张淑兴. 磷酸铁锂电池老化研究探讨[J]. 电器与能效管理技术2023(5): 65-71.
ZENG Qiquan, ZHANG Shuxing. Research on aging of lithium iron phosphate batteries[J]. Electrical & Energy Management Technology, 2023(5): 65-71.
[20]
曹梓泉,李雅欣,马凌怡,等. 基于锂电池的电氢混合储能系统研究[J]. 电器与能效管理技术2022(5): 29-34.
CAO Ziquan, LI Yaxin, MA Lingyi, et al. Research on electric-hydrogen hybrid energy storage system based on Lithium battery[J]. Electrical & Energy Management Technology, 2022(5): 29-34.
[21]
赵嘉兴,高伟,上官明霞,等. 风电参与电力系统调频综述[J]. 电力系统保护与控制2017, 45(21): 157-169.
ZHAO Jiaxing, GAO Wei, SHANGGUAN Mingxia, et al. Review on frequency regulation technology of power grid by wind farm [J]. Power System Protection and Control, 2017, 45(21): 157-169.

Funding

Jiangsu Province Carbon Peak Carbon Neutral Special Fund Project(BA2022105)
PDF(4025 KB)

Accesses

Citation

Detail

Sections
Recommended

/