Optimization Scheduling of Virtual Power Plants Participating in Electric Energy Trade-Carbon Trade-Green License Trade Considering Uncertainty and Correlation of Wind Power and PV

TAO Zefei,LIU Min,HE Wang

Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 55-64.

PDF(10777 KB)
PDF(10777 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 55-64. DOI: 10.16513/j.2096-2185.DE.2409307
Basic Research

Optimization Scheduling of Virtual Power Plants Participating in Electric Energy Trade-Carbon Trade-Green License Trade Considering Uncertainty and Correlation of Wind Power and PV

Author information +
History +

Abstract

The injection of a high percentage of renewable energy sources introduces many uncertainties into the virtual power plant. If these uncertainty sources are ignored or inaccurately characterized, it will bring great risks to the operation and scheduling of the virtual power plant. In order to solve this problem, this paper considers the correlation of wind and solar energy sources in the virtual power plant, and utilizes Frank-Copula as a "connectivity function" to solve the joint distribution function of wind and solar power, so as to generate a typical scenario of wind and solar power. In order to minimize the operating cost of the virtual power plant, this paper comprehensively considers the electricity-carbon-green certificate market and the incentive-based demand response mechanism. The interval method, stepped carbon price, and Gounod model are used to describe the uncertainties of demand response, carbon price, and green certificate price, respectively, and an optimization scheduling model for virtual power plants based on interval linear programming is constructed. The case study results show that the model is able to quantify the risk of each component's uncertainty on the virtual power plant dispatch, and ensure the safe and reliable operation of the virtual power plant with a certain degree of economy at the same time.

Key words

virtual power plants / multiple uncertainties / scene generation / demand response / carbon trading / green certificate trading / optimization scheduling

Cite this article

Download Citations
Zefei TAO , Min LIU , Wang HE. Optimization Scheduling of Virtual Power Plants Participating in Electric Energy Trade-Carbon Trade-Green License Trade Considering Uncertainty and Correlation of Wind Power and PV[J]. Distributed Energy Resources. 2024, 9(3): 55-64 https://doi.org/10.16513/j.2096-2185.DE.2409307

References

[1]
谢小荣,马宁嘉,刘威,等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报2023, 43(1): 158-169.
XIE Xiaorong, MA Ningjia, LIU Wei, et al. Review and outlook of energy storage applications in new power systems[J]. Proceedings of the CSEE, 2023, 43(1): 158-169.
[2]
修连成,甘艳,何靖萱,等. 基于EMAF的新型电力系统电压畸变工况下并网逆变器快速锁相方法[J]. 智慧电力2022, 50(1): 88-93.
XIU Liancheng, GAN Yan, HE Jingxuan, et al. Fast phase locking of grid-connected inverters under distorted voltage in new power system based on EMAF[J]. Smart Power, 2022, 50(1): 88-93.
[3]
田立亭,程林,郭剑波,等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术2020, 44(6): 2097-2108.
TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review of research on the management and interaction mechanism of virtual power plants for distributed energy[J]. Power System Technology, 2020, 44(6): 2097-2108.
[4]
尹昌洁,权楠,苏凯,等. 我国分布式能源发展现状及展望[J]. 分布式能源2022, 7(2): 1-7.
YIN Changjie, QUAN Nan, SU Kai, et al. Status and outlook of distributed energy development in China[J]. Distributed Energy, 2022, 7(2): 1-7.
[5]
吴静. 分布式资源聚合虚拟电厂多维交易优化模型研究[D]. 北京:华北电力大学,2021.
WU Jing. Research on multi-dimensional transaction optimization model of virtual power plant aggregated by distributed resources[D]. Beijing: North China Electric Power University, 2021.
[6]
康重庆,陈启鑫,苏剑,等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化2022, 46(18): 3-14.
KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 3-14.
[7]
彭道刚,税纪钧,王丹豪,等. “双碳”背景下虚拟电厂研究综述[J]. 发电技术2023, 43(5): 602-615.
PENG Daogang, SHUI Jijun, WANG Danhao, et al. Review of virtual power plant under the background of “Dual Carbon”[J]. Power Generation Technology, 2023, 43(5): 602-615.
[8]
ZHANG T, LI Y, YAN R, et al. A master-slave game optimization model for electric power companies considering virtual power plant[J]. IEEE Access, 2022, 10: 21812-21820.
[9]
王佳惠,牛玉广,陈玥,等. 电-碳联合市场下虚拟电厂主从博弈优化调度[J]. 电力自动化设备2023, 43(5): 235-242.
WANG Jiahui, NIU Yuguang, CHEN Yue, et al. Master-slave game optimal dispatching of virtual power plant under electricity-carbon joint market[J]. Electric Power Automation Equipment, 2023, 43(5): 235-242.
[10]
ZHANG Y, LIU F, WANG Z, et al. Robust scheduling of virtual power plant under exogenous and endogenous uncertainties[J]. IEEE Transactions on Power Systems, 2021, 37(2): 1311-1325.
[11]
MEI Z, JIANG X, WANG K. Multi-objective coordinated optimal scheduling of virtual power plants based on demand side response[C]//2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). China: IEEE, 2022: 753-757.
[12]
WANG H, JIA Y, LAI C S, et al. Optimal virtual power plant operational regime under reserve uncertainty[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2973-2985.
[13]
YAN X, GAO C, SONG M, et al. An IGDT-based day-ahead co-optimization of energy and reserve in a VPP considering multiple uncertainties[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 4037-4049.
[14]
许高秀,王旭,邓晖,等. 考虑调频需求及风光出力不确定性的储能系统参与能量-调频市场运行策略[J]. 电网技术2023, 47(6): 2317-2330.
XU Gaoxiu, WANG Xu, DENG Hui, et al. Optimal operation strategy of energy storage system's participation in energy and regulation market considering uncertainties of regulation requirements and wind-photovoltaic output [J]. Power System Technology, 2023, 47(6): 2317-2330.
[15]
姜华,杨知方,林伟,等. 计及分布式新能源不确定性的虚拟电厂调度边界概率分布刻画方法[J]. 中国电机工程学报2022, 42(15): 5565-5576.
JIANG Hua, YANG Zhifang, LIN Wei, et al. Probability distribution of dispatch region for a virtual power plant considering distributed renewable uncertainties[J]. Proceedings of the CSEE, 2022, 42(15): 5565-5576.
[16]
ZHANG T, HU Z. Optimal scheduling strategy of virtual power plant with power-to-gas in dual energy markets[J]. IEEE Transactions on Industry Applications, 2021, 58(2): 2921-2929.
[17]
李东东,王啸林,沈运帷,等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备2023, 43(5): 210-217, 251.
LI Dongdong, WANG Xiaolin, SHEN Yunwei, et al. Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric Power Automation Equipment, 2023, 43(5): 210-217, 251.
[18]
CAO W, WANG S, XU M. Optimal scheduling of virtual power plant based on latin hypercube sampling and improved CLARA clustering algorithm[J]. Processes, 2022, 10(11): 2414.
[19]
张立辉,戴谷禹,聂青云,等. 碳交易机制下计及用电行为的虚拟电厂经济调度模型[J]. 电力系统保护与控制2020, 48(24): 154-163.
ZHANG Lihui, DAI Guyu, NIE Qingyun, et al. Economic dispatch model of virtual power plant considering electricity consumption under a carbon trading mechanism[J]. Power System Protection and Control, 2020, 48(24): 154-163.
[20]
陈巍,江岳文. 碳-绿证-电量市场耦合交易优化研究[J]. 电网技术2023, 47(6): 2273-2287.
CHEN Wei, JIANG Yuewen. Trading optimization of carbon-green certificate-electricity market couplin[J]. Power System Technology, 2023, 47(6): 2273-2287.
[21]
尚楠,陈政,卢治霖,等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术2023, 47(1): 142-154.
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154.
[22]
林顺富,刘持涛,李东东,等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报2020, 40(5): 1409-1421.
LIN Shunfu, LIU Chitao, LI Dongdong, et al. Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids [J]. Proceedings of the CSEE, 2020, 40(5): 1409-1421.
[23]
周尚筹. 考虑风—光Copula相关性的电力系统运行风险评估[D]. 广州:华南理工大学,2016.
ZHOU Shangchou. Power system operation risk assessment considering wind-solar generation correlation based upon copula theory[D]. Guangzhou: South China University of Technology, 2016.
[24]
WANG L, HOU C, YE B, et al. Optimal operation analysis of integrated community energy system considering the uncertainty of demand response[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3681-3691.
[25]
詹博淳,冯昌森,尚楠,等. 发电联盟参与电-碳-绿证市场的协同优化策略[J]. 电力系统及其自动化学报2023, 35(11): 84-94.
ZHAN Bochun, FENG Changsen, SHANG Nan, et al. Collaborative optimization strategy for generation alliance participating in electricity carbon-green certificate market[J]. Proceedings of the CSU-EPSA, 2023, 35(11): 84-94.
[26]
GUO H, CHEN Q, XIA Q, et al. Modeling strategic behaviors of renewable energy with joint consideration on energy and tradable green certificate markets[J]. IEEE Transactions on Power Systems, 2019, 35(3): 1898-1910.
[27]
张虹,孟庆尧,马鸿君,等. 面向提升绿证需求的跨区互联系统经济低碳调度策略[J]. 电力系统自动化2022, 46(22): 51-61.
ZHANG Hong, MENG Qingyao, MA Hongjun, et al. Economic and low-carbon dispatching strategy of cross-region interconnected system for promoting green certificate demand[J]. Automation of Electric Power Systems, 2022, 46(22): 51-61.
[28]
ZHANG Q, WANG G, LI Y, et al. Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff[J]. Applied Energy, 2018, 227: 426-435.

Funding

Science and Technology Program of Guizhou Province(黔科合支撑[2021]一般409)
PDF(10777 KB)

Accesses

Citation

Detail

Sections
Recommended

/