Influence of Sea Salt Spray Environment on Aerodynamic Performance of Wind Turbine Airfoil

CHENG Zhi,SUN Chuanzong,SHAN Guangkun

Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 65-72.

PDF(5231 KB)
PDF(5231 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 65-72. DOI: 10.16513/j.2096-2185.DE.2409308
Application Technology

Influence of Sea Salt Spray Environment on Aerodynamic Performance of Wind Turbine Airfoil

Author information +
History +

Abstract

In order to explore the influence of the change of wet salt spray environment on the aerodynamic performance of the offshore wind airfoil, the component transport model and discrete phase model were used to establish the environmental model and set the parameters of the offshore salt spray environment. Combined with the user-defined function of the wall deposition model, the numerical simulation was carried out on the NACA4415 airfoil. It is found that the lift resistance coefficient of airfoil increases with the increase of salt spray concentration and decreases with the increase of air humidity. The particles are evenly distributed on the surface of the airfoil at 0.2~0.8 chord, with less deposition near the leading edge and more deposition at the trailing edge. With the increase of velocity, the deposition rate of particles decreases. With the increase of airfoil attack angle, the surface velocity distribution changes and the deposition rate is affected. With the increase of air humidity, the deposition amount of salt spray particles on the airfoil surface is reduced, and the decrease is more obvious in the area with large deposition amount, and the influence of humidity decreases with the increase of the angle of attack.

Key words

salt spray environment / airfoil profile / aerodynamic performance / discrete phase model / deposition

Cite this article

Download Citations
Zhi CHENG , Chuanzong SUN , Guangkun SHAN. Influence of Sea Salt Spray Environment on Aerodynamic Performance of Wind Turbine Airfoil[J]. Distributed Energy Resources. 2024, 9(3): 65-72 https://doi.org/10.16513/j.2096-2185.DE.2409308

References

[1]
许维凯. 海上风电发展趋势分析与探讨[J]. 资源节约与环保2023(1): 140-143.
[2]
毛晓娥,李成良,任旺. 温度、海拔与湿度对叶片气动性能的影响[J]. 风能2020(1): 96-100.
[3]
黄晖,殷华芳,章翔,等. 海上风电发电设施防盐雾措施讨论[J]. 中小企业管理与科技(下旬刊), 2017(6): 172-173.
HUANG Hui, YIN Huafang, ZHANG Xiang, et al. Discussion on measures to prevent salt fog in offshore wind power generation facilities[J]. Management &Technology of SME (Second Edition), 2017(6): 172-173.
[4]
高彦明,向利,陈川. 大气盐雾含量监测与影响因素研究[J]. 环境技术2021, 39(5): 89-93.
GAO Yanming, XIANG Li, CHEN Chuan. Study on monitoring and influencing factors of atmospheric salt fog content[J]. Environmental Technology, 2021, 39(5): 89-93.
[5]
尧瑶,韦桥斌,曾东,等. 南海湿热海上风电机组环境条件研究[J]. 环境技术2023, 41(8): 49-54.
YAO Yao, WEI Qiaobin, ZENG Dong, et al. Study on environmental conditions of humid hot offshore wind turbines in south China sea[J]. Environmental Technology, 2023, 41(8): 49-54.
[6]
CAI M, ABBASI E, ARASTOOPOUR H. Analysis of the performance of a wind-turbine airfoil under heavy-rain conditions using a multiphase computational fluid dynamics approach[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3266-3275.
[7]
岳巍澎,刘燕,薛宇. 海上湿气对风力机叶片气动特性影响初探[J]. 机械工程学报2017, 53(10): 151-159.
YUE Weipeng, LIU Yan, XUE Yu. Preliminary study on the effect of moisture on the aerodynamic characteristics of wind turbine blades[J]. Journal of Mechanical Engineering, 2017, 53(10): 151-159.
[8]
刘燕,岳巍澎. 海上湿气对翼型气动特性的影响初探[J]. 空气动力学学报2016, 34(4): 541-547.
LIU Yan, YUE Weipeng. Study of the influence moist air on airfoil aerodynamic characteristics[J]. Acta Aerodynamic Sinica, 2016, 34(4): 541-547.
[9]
薛宇,刘燕. 海上湿气对风力机翼型及叶片气动性能影响研究[J]. 分布式能源2016, 1(2): 21-27.
XUE Yu, LIU Yan. Research on the influence of offshore moisture on the aerodynamic performance of wind turbine wings and blades[J]. Distributed Energy, 2016, 1(2): 21-27.
[10]
COHAN A C, ARASTOOPOUR H. Numerical simulation and analysis of the effect of rain and surface property on wind-turbine airfoil performance[J]. International Journal of Multiphase Flow, 2016, 81: 46-53.
[11]
何平,胡丹梅,陈乃超. 海上风力机的数值模拟[J]. 可再生能源2010, 28(4): 21-24.
HE Ping, HU Danmei, CHEN Naichao. The numerical simulation of offshore wind turbine[J]. Renewable Energy Resources, 2010, 28(4): 21-24.
[12]
CORTÉS E, SÁNCHEZ F, O'CARROLL A, et al. On the material characterisation of wind turbine blade coatings: The effect of interphase coating-laminate adhesion on rain erosion performance[J]. Materials, 2017, 10(10): 1146.
[13]
LONG Lingjie, LIU Xiaogang, ZHAO Chenxi, et al. Numerical investigation of the water-drop impact on low-drag airfoil using the euler-euler approach and eulerian wall film model[J]. Applied Sciences, 2023, 13(13): 7743.
[14]
文洮,陈春霖,王林柱,等. 降雨对风力机翼型气动性能的影响[J]. 辽宁工业大学学报(自然科学版), 2022, 42(1): 22-30.
WEN Tao, CHEN Chunlin, WANG Linzhu, et al. Effect of rainfall on aerodynamic performance of wind turbine airfoil[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2022, 42(1): 22-30.
[15]
倪艺铭,高艳婧,刘宏伟,等. 水沙环境对海流能机组水动性能的影响[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(4): 116-125.
NI Yiming, GAO Yanjing, LIU Hongwei, et al. Effect of water-sediment environment on hydrodynamic performance of a tidal current turbine[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(4): 116-125.
[16]
李德顺,何婷,王清. 颗粒直径对风力机翼型动态失速特性的影响研究[J]. 太阳能学报2023, 44(12): 207-213.
LI Deshun, HE Ting, WANG Qing. Influence of particle diameter on dynamic stall characteristics of wind turbine airfoil[J]. Acta Energiaesol Aris Sinica, 2023, 44(12): 207-213.
[17]
WANG Qing, YU Muyao, LI Deshun, et al. Dynamic stall characteristics of wind turbine airfoil in sand-wind environment[J]. Ocean Engineering, 2023, 274: 114080.
[18]
何婷. 风沙环境下风力机翼型动态失速特性研究[D]. 兰州:兰州理工大学,2020.
HE Ting. Study the dynamic stall characteristics of wind turbine airfoil under sand-wind environment[D]. Lanzhou: Lanzhou University of Technology, 2020.
[19]
李焜林. 盐雾环境下风力机叶片翼型气动性能研究[D]. 长沙:长沙理工大学,2017.
LI Kunlin. Aerodynamic performance of wind turbine blade airfoil under salt fog environment[D]. Changsha: Changsha University of Technology, 2017.
[20]
马爱清,徐捷立. 考虑盐雾环境的雷击海上风机暂态过程数值模拟[J]. 电瓷避雷器2021, 299(1): 145-152.
MA Aiqing, XU Jieli. Numerical simulation of offshore wind turbine lightning striking transient process considering salt-fog environment[J]. Insulators and Surge Arresters, 2021, 299(1): 145-152.
[21]
ZHANG Yingwei, GUO Wenfeng, LI Yan, et al. An experimental study of icing distribution on a symmetrical airfoil for wind turbine blade in the offshore environmental condition[J]. Ocean Engineering, 2023, 273: 113960.
[22]
杨星,郝子晗,丰镇平. 考虑进口旋流的涡轮静叶流动传热的颗粒物沉积效应[J]. 西安交通大学学报2021, 55(7): 61-70.
YANG Xing, HAO Zihan, FENG Zhenping. Particle deposition effect of the flow and heat transfer in a turbine vane passage with inlet swirl[J]. Journal of Xi'an Jiaotong University, 2021, 55(7): 61-70.
[23]
邵宏勋,谢俊,桂玉双,等. 基于微米级颗粒临界沉积/剥离标准的研究进展[J]. 化工进展2023, 42(12): 6141-6156.
SHAO Hongxun, XIE Jun, GUI Yushuang, et al. Research progress of critical deposition/stripping standards based on micron-sized particles[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6141-6156.
[24]
杨晓军,刘文博,胡英琦,等. 高压涡轮叶片颗粒物沉积特性数值模拟[J]. 推进技术2022, 43(11): 169-180.
YANG Xiaojun, LIU Wenbo, HU Yingqi, et al. Numerical simulation of particle deposition characteristics of high pressure turbine blades[J]. Journal of Propulsion Technology, 2022, 43 (11): 169-180.
[25]
EL-BATSH H, HASELBACHER H. Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades[C]//Proceedings of ASME Turbo Expo. New York, USA, ASME, 2002: GT2002-30600.
[26]
王辉,焦杨,辛文宇,等. 湿颗粒分离中的液桥力作用及临界分离初速度[J]. 大学物理2015, 34(7): 44-48.
WANG Hui, JIAO Yang, XIN Wenyu, et al. Effect of liquid bridge force and critical velocity for the separation of wet granule[J]. College Physics, 2015, 34(7): 44-48.
[27]
詹飞龙,丁国良,庄大伟,等. 析湿工况下翅片管式换热器表面粉尘沉积过程的数值模型[J]. 化工学报2020, 71(5): 1986-1994, 2458.
ZHAN Feilong, DING Guoliang, ZHUANG Dawei, et al. Numerical model of dust particle deposition process on surface of fin-and-tube heat exchanger under wet conditions[J]. Journal of Chemical Engineering, 2020, 71(5): 1986-1994, 2458.
[28]
LIU Jiahao, SHI Xinyuan, YANG Manjiang, et al. The electro-thermal behaviors of the lithium-ion batteries corroded by the salt spray environment[J]. Electrochimica Acta, 2024, 476: 143715.
[29]
李颖,钟茗秋,黄祥声,等. 湿热沿海海上风电机组环境适应性测试评价分析[J]. 环境技术2020, 38(1): 50-56.
LI Ying, ZHONG Mingqiu, HUANG Xiangsheng, et al. Evaluation and analysis on environmental adaptability test of offshore wind turbine in hot and humid coastal area[J]. Environmental Technology, 2020, 38(1): 50-56.
[30]
杨翔,费恒涛,李姿扬,等. 人工气候模拟海洋大气盐雾区的加速试验设计[J]. 科技资讯2014, 12(27): 235-236.
[31]
曾菊尧. 关于我国沿海地区近地面大气中的盐雾及其分布[J]. 特殊电工1982(4): 15-20.
[32]
YIN Rui, HUANG Jing, HE Zhiyuan. Lift and drag coefficient map of NACA4415 airfoil[J]. Journal of Physics: Conference Series, 2021, 2076(1): 012066.

Funding

Liaoning Provincial Department of Science and Technology Doctor Start Fund Project(2019-BS-182)
PDF(5231 KB)

Accesses

Citation

Detail

Sections
Recommended

/