PDF(4478 KB)
Short-Term Load Forecasting Method Based on Dynamic Adaptation of Meteorological Factors
DENG Li,GENG Lin,XIAO Weidong,WANG Guocheng,WANG Yanhong
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 73-81.
PDF(4478 KB)
PDF(4478 KB)
Short-Term Load Forecasting Method Based on Dynamic Adaptation of Meteorological Factors
In the context of accelerating the construction of a new power system, improving the accuracy of load forecasting is an important measure to ensure the economic, safe and stable operation of the power system, and it is also the key to promote the development of smart grid. In order to enhance the ability of regional load forecasting, a short-term load forecasting method based on dynamic adaptive meteorological impact factors is proposed. Firstly, a load/meteorological information fusion module based on parallel multi-scale temporal convolutional neural networks is employed to mine the multi-time period change model of historical load and regional weather forecast. Then, a dynamic identification module of meteorological factors based on depth-gated residual neural network is proposed. By dynamically adjusting the feature contribution and optimizing the feature selection, the fusion of feature weights of different spatio-temporal scales is enhanced, and the ability of the model to extract key features is improved. Finally, the load data of a region in Beijing, Tianjin and Hebei are used as an example to prove that the proposed regional load forecasting method has higher forecasting accuracy and better tracking effect on regional load trend changes.
load forecasting / regional load / deep learning / data fusion / numerical weather prediction
| [1] |
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源,2021, 6(6): 1-8.
|
| [2] |
胡博,谢开贵,邵常政,等. 双碳目标下新型电力系统风险评述:特征、指标及评估方法[J]. 电力系统自动化,2023, 47(5): 1-15.
|
| [3] |
郭峰,王悦,陆鑫,等. 含高比例风电的新型电力系统的经济运行及储能配置[J]. 智慧电力,2023, 51(11): 76-82.
|
| [4] |
冯伟忠,李励. “双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术,2022, 43(3): 452-461.
|
| [5] |
谭青博,潘伟,王竹宁,等. 新型电力系统下综合能源系统的投资决策模型[J]. 智慧电力,2023, 51(8): 46-52.
|
| [6] |
|
| [7] |
李国庆,李欣彤,边竞,等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报,2021, 41(14): 4763-4776.
|
| [8] |
彭泽森,刘庆珍,张溢. 基于多模型综合特征选择和LSTM-Attention的短期负荷预测[J]. 分布式能源,2022, 7(6): 11-20.
|
| [9] |
|
| [10] |
戴明明,王康,李强,等. 基于天气分类和卷积神经网络的短期负荷预测方法[J]. 电力需求侧管理,2023, 25(3): 93-98.
|
| [11] |
蒲天骄,韩笑. 新型电力系统中人工智能应用的关键技术[J]. 电力信息与通信技术,2024, 22(1): 1-13.
|
| [12] |
李磊,林珊,贾颉辉. 基于TCN-Attention神经网络的短期负荷预测[J]. 电力信息与通信技术,2023, 21(3): 10-16.
|
| [13] |
耿光飞,郭喜庆. 模糊线性回归法在负荷预测中的应用[J]. 电网技术,2002, 26(4): 19-21.
|
| [14] |
邓带雨,李坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术,2020, 44(2): 593-602.
|
| [15] |
|
| [16] |
朱凌建,荀子涵,王裕鑫,等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术,2021, 45(11): 4532-4539.
|
| [17] |
周思思,李勇,郭钇秀,等. 考虑时序特征提取与双重注意力融合的TCN超短期负荷预测[J]. 电力系统自动化,2023, 47(18): 193-205.
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |