Calculation Model of Distributed Photovoltaic Carrying Capacity for 110 kV Power Supply Area Based on CART Decision Tree

DAI Shoule,LI Ping

Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 82-88.

PDF(1049 KB)
PDF(1049 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (3) : 82-88. DOI: 10.16513/j.2096-2185.DE.2409310
Application Technology

Calculation Model of Distributed Photovoltaic Carrying Capacity for 110 kV Power Supply Area Based on CART Decision Tree

Author information +
History +

Abstract

Distributed photovoltaics are greatly affected by weather conditions, and calculating the carrying capacity of distributed photovoltaics in 110 kV power supply areas is of great significance for regional power supply. A calculation model of distributed photovoltaic carrying capacity for 110 kV power supply areas based on classification and regression trees (CART) is proposed to address this issue. This model is based on the output power of distributed power sources, the proportion of regional distributed power generation, and the incremental line loss of local distributed power sources, etc. Using the CART decision tree, a calculation model of the distributed photovoltaic carrying capacity for 110 kV power supply areas is established, and the improved whale optimization algorithm is used to solve the calculation results. After experimental testing, it is found that the model has higher accuracy in calculating the distributed photovoltaic carrying capacity. This indicates that the method can effectively calculate the distributed photovoltaic carrying capacity of different experimental areas in different seasons, and has high application value.

Key words

classification and regression trees (CART) / 110 kV power supply area / distributed photovoltaic / carrying capacity

Cite this article

Download Citations
Shoule DAI , Ping LI. Calculation Model of Distributed Photovoltaic Carrying Capacity for 110 kV Power Supply Area Based on CART Decision Tree[J]. Distributed Energy Resources. 2024, 9(3): 82-88 https://doi.org/10.16513/j.2096-2185.DE.2409310

References

[1]
蔡秀雯,陈茂新,陈钢,等. 考虑主动管理与需求侧管理的主动配电网分布式光伏最大准入容量计算方法[J]. 电力建设2021, 42(5): 38-47.
CAI Xiuwen, CHEN Maoxin, CHEN Gang, et al. Calculation method for maximum allowable access capacity of distributed PV in active distribution network considering active management and demand-side management[J]. Electric Power Construction, 2021, 42(5): 38-47.
[2]
方一晨,张沈习,程浩忠,等. 含智能软开关的主动配电网分布式光伏准入容量鲁棒优化[J]. 电力系统自动化2021, 45(7): 8-17.
FANG Yichen, ZHANG Shenxi, CHENG Haozhong, et al. Robust optimization of distributed photovoltaic hosting capacity of active distribution network with soft open point[J]. Automation of Electric Power Systems, 2021, 45(7): 8-17.
[3]
朱一昕,陈奕帆,毕恺韬,等. 基于半不变量随机潮流计算的分布式光伏优化配置研究[J]. 智慧电力2023, 51(3): 67-72.
ZHU Yixin, CHEN Yifan, BI Kaitao, et al. Optimal allocation of distributed PV based on semi-invariant stochastic power flow calculation[J]. Smart Power, 2023, 51(3): 67-72.
[4]
申洪涛,刘宝铭,任鹏,等. 基于辨识解耦的含高渗透分布式光伏用户集群基线负荷估计方法[J]. 电力系统保护与控制2022, 50(3): 164-173.
SHEN Hongtao, LIU Baoming, REN Peng, et al. Aggregated baseline load estimation method under high distributed photovoltaic penetration based on identification and decoupling[J]. Power System Protection and Control, 2022, 50(3): 164-173.
[5]
王海云,于希娟,张雨璇,等. 大型城市电网下分布式光伏承载力评估分析[J]. 太阳能学报2023, 44(6): 260-264.
WANG Haiyun, YU Xijuan, ZHANG Yuxuan, et al. Evaluation and analysis of distributed photovoltaic carrying capacity in large urban power grid[J]. Acta Energiae Solaris Sinica, 2023, 44(6): 260-264.
[6]
于昊正,赵寒杰,李科,等. 计及需求响应的分布式光伏集群承载能力评估[J]. 电力建设2023, 44(2): 122-131.
YU Haozheng, ZHAO Hanjie, LI Ke, et al. Carrying capacity evaluation of distribution network for distributed photovoltaic cluster considering user-side demand response[J]. Electric Power Construction, 2023, 44(6): 122-131.
[7]
罗澍忻,朱廷猛,余浩,等. 考虑频率稳定约束的电网新能源承载能力评估方法及其应用[J]. 南方电网技术2023, 17(10): 65-76.
LUO Shuxin, ZHU Tingmeng, YU Hao, et al. Evaluation method and application of carrying capacities of new energy in power grid considering the constraints of frequency stability[J]. Southern Power System Technology, 2023, 17(10): 65-76.
[8]
丁施尹,谭锡林,叶萌,等. 含高比例分布式光伏的母线负荷预测方法[J]. 可再生能源2021, 39(1): 117-122.
DING Shiyin, TAN Xilin, YE Meng, et al. Bus load forecasting considering large-scale distributed PV interconnection[J]. Renewable Energy Resources, 2021, 39(1): 117-122.
[9]
赵冬梅,任耀宇,程雪婷. 低压配电网分布式光伏接纳能力分析[J]. 现代电力2021, 38(4): 392-401,
ZHAO Dongmei, REN Yaoyu, CHENG Xueting. Analysis of distributed photovoltaic acceptance capacity in low voltage distribution network[J]. Modern Electric Power, 2021, 38(4): 392-401.
[10]
LEE I, LUO Y, CARRETTA H, et al. Latent pathway-based Bayesian models to identify intervenable factors of racial disparities in breast cancer stage at diagnosis[J]. Cancer Causes & Control, 2023, 35(2): 253-263.
[11]
王光辉,唐新明,张涛,等. 全国建筑物遥感监测与分布式光伏建设潜力分析[J]. 中国工程科学2021, 23(6): 92-100.
WANG Guanghui, TANG Xinming, ZHANG Tao, et al. Building monitoring by remote sensing and analysis of distributed photovoltaic construction potentials[J]. Chinese Engineering Science, 2021, 23(6): 92-100.
[12]
高博,茆超,张冲标,等. 基于时空图网络的分布式光伏发电出力预测[J]. 电力系统及其自动化学报2023, 35(3): 125-133.
GAO Bo, MAO Chao, ZHANG Chongbiao, et al. Output prediction of distributed photovoltaic power generation based on spatial-temporal graph neural network[J]. Proceedings of the CSU-EPSA, 2023, 35(3): 125-133.
[13]
杨锡运,赵泽宇,杨岩,等. 基于时空信息组合的分布式光伏功率预测方法研究[J]. 热力发电2022, 51(8): 64-72.
YANG Xiyun, ZHAO Zeyu, YANG Yan, et al. Research on distributed photovoltaic power prediction method based on combination of spatiot-emporal information[J]. Thermal Power Generation, 2022, 51(8): 64-72.
[14]
张梦泽,张一舟,李凯勇. 基于CART决策树的CCL大数据有效信息提取[J]. 计算机仿真2021, 38(9): 456-459, 464.
ZHANG Mengze, ZHANG Yizhou, LI Kaiyong. Effective information extraction of cold chain logistics big data based on cart decision tree[J]. Computer Simulation, 2021, 38(9): 456-459, 464.
[15]
张振宇,王文倬,张小奇,等. 基于电力系统承载力指标的新能源装机规划方法[J]. 电网技术2021, 45(2): 632-639.
ZHANG Zhenyu, WANG Wenzhuo, ZHANG Xiaoqi, et al. Renewable energy capacity planning based on carrying capacity indicators of power system[J]. Power System Technology, 2021, 45(2): 632-639.
[16]
王婷,陈晨,谢海鹏. 配电网对分布式电源和电动汽车的承载力评估及提升方法综述[J]. 电力建设2022, 43(9): 12-24.
WANG Ting, CHEN Chen, XIE Haipeng. Review on evaluation and promotion methods of carrying capacity for distributed generation and electric vehicles in distribution network[J]. Electric Power Construction, 2022, 43(9): 12-24.
[17]
党建,闫运江,贾嵘,等. 基于图计算的配电网最大供电能力评估研究[J]. 电网技术2022, 46(3): 1039-1048.
DANG Jian, YAN Yunjiang, JIA Rong, et al. Total supply capability evaluation of distribution network based on graph computation[J]. Power System Technology, 2022, 46(3): 1039-1048.
[18]
葛磊蛟,秦羽飞,刘嘉恒,等. 基于相似日与BA-WNN的分布式光伏数据虚拟采集方法[J]. 电力自动化设备2021, 41(6): 8-14.
GE Leijiao, QIN Yufei, LIU Jiaheng, et al. Virtual acquisition method of distributed photovoltaic data based on similarity day and BA-WNN[J]. Electric Power Automation Equipment, 2021, 41(6): 8-14.
[19]
张希淼,马宁,付伟,等. 融合混沌映射和二次插值的自适应鲸鱼优化算法[J]. 计算机工程与设计2023, 44(4): 1088-1096.
ZHANG Ximiao, MA Ning, FU Wei, et al. Adaptive whale optimization algorithm based on chaotic mapping and quadratic interpolation[J]. Computer Engineering and Design, 2023, 44(4): 1088-1096.
[20]
秋兴国,王瑞知,张卫国,等. 基于混合策略改进的鲸鱼优化算法[J]. 计算机工程与应用2022, 58(1): 70-78.
QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, et al. Improved whale optimizer algorithm based on hybrid strategy[J]. Computer Engineering and Applications, 2022, 58(1): 70-78.
[21]
于涛,高岳林. 融入小生境和混合变异策略的鲸鱼优化算法[J]. 计算机工程与应用2024, 60(10): 88-104.
YU Tao, GAO Yuelin. Whale optimization algorithm integrating niche and hybrid mutation strategy[J]. Computer Engineering and Applications, 2024, 60(10): 88-104.
PDF(1049 KB)

Accesses

Citation

Detail

Sections
Recommended

/