PDF(2674 KB)
Multi-Timescale Prediction of Source-Load Energy in Integrated Energy System
ZHANG Shicong,YANG Xinyan,HAN Shaofeng,WU Di,LIU Zhijian,GUO Zhongjun
Distributed Energy ›› 2024, Vol. 9 ›› Issue (4) : 1-10.
PDF(2674 KB)
PDF(2674 KB)
Multi-Timescale Prediction of Source-Load Energy in Integrated Energy System
In order to cope with the uncertainty of renewable energy utilization and customer loads, a multi-timescale prediction method is proposed, where the prediction process is carried out in three phases: day-ahead, intra-day rolling and real-time, with timescales of 1 h, 15 min and 5 min, respectively. First, a prediction method based on difference statistics is used to accomplish the three stages of forecasting meteorological parameters. Second, a regression prediction model combining signal decomposition and machine learning is established for the day-ahead and intraday stages of load prediction, and a machine learning time series prediction model is established for the real-time stage. Next, the best prediction methods for typical daily loads in the day-ahead and intra-day rolling stages are determined based on the prediction accuracy metrics of the test set. Finally, the prediction method is applied to the energy forecast of typical days to verify the feasibility of the method. The results show that the determination coefficient R2 of the prediction results of the meteorological parameters for a typical day in all three phases is above 0.8; in the day-ahead and intraday rolling phases, the prediction tasks of multivariate loads should be performed with different signal decomposition methods, and the R2 of the load prediction results in the real-time phase is above 0.9, and the mean absolute percentage error (MAPE) is close to 0.
energy prediction / signal decomposition / machine learning / multi-timescale
| [1] |
臧宝志,吴长龙,朱宏光,等. 考虑环保与可靠性成本的园区综合能源系统经济运行技术[J]. 分布式能源,2020, 5(4): 18-27.
|
| [2] |
|
| [3] |
郑诗程,许浩,郎佳红,等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报,2024, 45(3): 460-469.
|
| [4] |
|
| [5] |
陈中飞,赵越,蔡秋娜,等. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力,2024, 57(5): 50-60.
|
| [6] |
杨首晖,陈传彬,王雪晶,等. 基于小波变换和季节性Holt-Winters模型的短期负荷预测方法[J]. 电力需求侧管理,2021, 23(5): 70-75.
|
| [7] |
|
| [8] |
王超,陈奇,谷新梅,等. 一种基于混合模型的短期电价预测方法[J]. 内蒙古电力技术,2023, 41(4): 73-80.
|
| [9] |
封钰,宋佑斌,金晟,等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术,2023, 44(6): 889-895.
|
| [10] |
胡如乐,陈逸枞,张大海,等. 基于SSA-Bi-LSTM神经网络的母线负荷预测方法[J]. 广东电力,2022, 35(2): 19-26.
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
王德文,安涵. 基于二次分解双向门控单元新型电力系统超短期负荷预测[J]. 电力科学与工程,2024, 40(3): 1-9.
|
| [16] |
邹鑫,罗涓. 用梯度提升决策树实现电力负荷非线性影响因素分析[J]. 电力科学与工程,2024, 40(3): 10-19.
|
| [17] |
|
| [18] |
赵紫昱,陈渊睿,陈霆威,等. 基于时空图注意力网络的超短期区域负荷预测[J]. 电力系统自动化,2024, 48(12): 147-155.
|
| [19] |
|
| [20] |
郭威,孙胜博,陶鹏,等. 基于多元变分模态分解和混合深度神经网络的短期光伏功率预测[J]. 太阳能学报,2024, 45(4): 489-499.
|
| [21] |
胡雪峰,张亮. 基于迁移学习和AlexNet的复合电能质量扰动识别[J]. 自动化仪表,2023, 44(7): 55-60.
|
/
| 〈 |
|
〉 |