PDF(3992 KB)
Three-Level SVPWM Carrier Algorithm of Type Ⅰ NPC Based on Unified Duty Cycle Function of Whole Sector
WU Koulin,YUAN Qingwei,XIE Yeyuan,LIU Hongde,QIAN Wei
Distributed Energy ›› 2024, Vol. 9 ›› Issue (4) : 11-22.
PDF(3992 KB)
PDF(3992 KB)
Three-Level SVPWM Carrier Algorithm of Type Ⅰ NPC Based on Unified Duty Cycle Function of Whole Sector
As the core equipment of medium and large-capacity new energy power generation system, the modulation algorithm of the type I neutral point clamped (NPC) three-level (3L) converter can directly affect the energy conversion efficiency, harmonic characteristics and operation control characteristics of the converter. In view of that lots of trigonometric function computation is included in the implementation process of the traditional space vector pulse width modulation (SVPWM) strategy of type I NPC 3L converter, this paper executes the sector-area location identifications of the reference voltage vector and the active time calculations of the voltage vector adopted in the modulation algorithm based on the three-phase stationary coordinate system. By induction and reorganization, the three-phase unified duty ratio function available for all sectors is obtained according to the carrier-based idea of single modulated wave with dual-carrier. With the duty ratio function, the digital controller of the converter can obtain the control signals of the power switches by simple relational operations and numerical calculations, which avoids a lot of trigonometric function calculations and saves hardware resources. In addition, the SVPWM and sinusoidal pulse width modulation (SPWM) + 3rd harmonic injection modulation algorithms are compared, and the intrinsic differences between the two modulation algorithms from the perspective of the modulated waves are revealed. Finally, the effectiveness of the proposed algorithm is verified by software simulation.
three-level / carrier-based SVPWM / SPWM+ 3rd harmonic injection / three-phase stationary coordinate system / unified duty ratio function
| [1] |
林玉鑫,张京业. 海上风电的发展现状与前景展望[J]. 分布式能源,2023, 8(2): 1-10.
|
| [2] |
蔡旭,陈根,周党生,等. 海上风电变流器研究现状与展望[J]. 全球能源互联网,2019, 2(2): 102-115.
|
| [3] |
李铮,郭小江,申旭辉,等. 我国海上风电发展关键技术综述[J]. 发电技术,2022, 43(2): 186-197.
|
| [4] |
刘淑军,郭铸,黄伟煌,等. 海上风电柔性直流输电系统新型电压-频率控制策略[J]. 广东电力,2022, 35(10): 12-19.
|
| [5] |
吕杰,杨维稼,黄玮,等. 66 kV交流接入海上换流站方案的技术经济性[J]. 中国电力,2020, 53(7): 72-79.
|
| [6] |
蔡蓉,张立波,程濛,等. 66 kV海上风电交流集电方案技术经济性研究[J]. 全球能源互联网,2019, 2(2): 155-162.
|
| [7] |
沈志雨,刘毅力,郑博文,等. 基于自适应VSG的微网光储充放电控制技术[J]. 分布式能源,2021, 6(5): 18-25.
|
| [8] |
陈强. 三电平储能变流器的研制[J]. 电力电子技术,2021, 55(3): 122-124.
|
| [9] |
王聪聪,肖伸平. 改进下垂控制在三相三电平PWM整流器中的应用[J]. 分布式能源,2017, 2(5): 24-29.
|
| [10] |
任康乐,张兴,王付胜,等. 中压三电平并网逆变器断续脉宽调制策略及其输出滤波器优化设计[J]. 中国电机工程学报,2015, 35(17): 4494-4504.
|
| [11] |
方斯琛,李丹,周波,等. 新型无扇区空间矢量脉宽调制算法[J]. 中国电机工程学报,2008, 28(30): 35-40.
|
| [12] |
王金平,刘斌,董浩,等. 中点钳位型三电平逆变器基于调制波分解的调制策略[J]. 电工技术学报,2023, 38(12): 3221-3233.
|
| [13] |
谷鑫,黄文豪,张国政,等. NPC三电平逆变器区间可调混合载波调制策略[J]. 电工电能新技术,2022, 41(10): 11-19.
|
| [14] |
|
| [15] |
骆子溥. 基于SVPWM调制技术的NPC三电平逆变器的研究与设计[D]. 哈尔滨:哈尔滨理工大学,2021.
|
| [16] |
周冠卿,张国荣,解润生,等. 改进的三电平逆变器变虚拟空间矢量调制策略[J]. 电力系统自动化,2023, 47(1): 172-182.
|
| [17] |
王红斌,刘成柱,吴龙,等. 三电平NPC逆变器的SHEPWM和DPWM切换策略研究[J]. 电力勘测设计,2021(6): 72-78.
|
| [18] |
王志捷,张兴,刘芳,等. 基于SHEPWM的三电平并网逆变器控制研究[J]. 电力电子技术,2018, 52(3): 1-3.
|
| [19] |
程竟陵. 改进SHEPWM技术及其在大功率并网逆变器的应用[D]. 杭州:浙江大学,2021.
|
| [20] |
刘云峰,何英杰,程瑞琪,等. 单相二极管箝位多电平逆变器CBPWM与SVPWM调制策略的等效关系[J]. 电机与控制学报,2020, 24(9): 13-21.
|
| [21] |
王东毅. 三电平变流器调制策略研究[D]. 合肥:合肥工业大学,2016.
|
| [22] |
|
| [23] |
牟文静,卢晓,鲁金升,等. 60°坐标系下三电平逆变器SVPWM的关键问题[J]. 电力科学与工程,2016, 32(7): 1-6.
|
| [24] |
陈晓鸥,许春雨,王枫明. 60°坐标系下三电平逆变器SVPWM控制策略研究[J]. 电工电能新技术,2017, 36(2): 43-49.
|
| [25] |
方辉,宋文胜,冯晓云,等. 三电平SVPWM与CBPWM算法的内在联系研究[J]. 电工技术学报,2014, 29(10): 19-26.
|
| [26] |
|
| [27] |
徐晓娜,王奎,郑泽东,等. 三相PWM变换器的共模电压抑制方法综述[J]. 中国电机工程学报,2023, 43(22): 8833-8850.
|
| [28] |
李光竹,詹坤,高广德,等. 基于PWM自适应稳压电流互感器的取能电源设计方法[J]. 智慧电力,2022, 50(6): 57-63.
|
本文得到国家电网南瑞集团有限公司JS2301767阻断型柔性交流合环装置关键技术研究及样机研制项目资助,在此表示衷心感谢。
/
| 〈 |
|
〉 |