Bidirectional Droop Control of Hybrid Microgrid Interface Converter Based on Sliding Mode Control

SHI Kai,TANG Chuxiong,XU Peifeng,SU Yuxin,REN Mingwei

Distributed Energy ›› 2024, Vol. 9 ›› Issue (4) : 23-32.

PDF(1640 KB)
PDF(1640 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (4) : 23-32. DOI: 10.16513/j.2096-2185.DE.2409403
Basic Research

Bidirectional Droop Control of Hybrid Microgrid Interface Converter Based on Sliding Mode Control

Author information +
History +

Abstract

Due to the different dynamic characteristics of AC-DC subnets in hybrid microgrids, power fluctuations will occur between subnets on both sides of the bidirectional interface converter (BIC) when the system's load changes, and the dynamic response of AC bus frequency and DC bus voltage will become poor. Therefore, a bidirectional droop control strategy based on fractional order sliding mode controller (FOSMC) is proposed. By introducing the sliding mode variable structure control with strong robustness, fast response speed and strong anti-interference ability into the BIC control, an improved fraction-order sliding mode controller is obtained, which can improve the transient response process of the system. The simulation model is built by Matlab/Simulink platform, and the effectiveness of the control strategy is verified under various working conditions. Compared with the traditional bidirectional droop control, the proposed control algorithm can not only guarantee the original steady-state characteristics of the system, but also accelerate the response speed of the whole system, suppress the instantaneous fluctuation of BIC transmission power in the transient process, reduce the reaction of power fluctuation on the AC and DC subnets bus, and improve the dynamic performance and anti-disturbance performance of the whole system.

Key words

hybrid AC-DC microgrid / bidirectional interface converter(BIC) / microgrid inertia / sliding mode control / bidirectional droop control

Cite this article

Download Citations
Kai SHI , Chuxiong TANG , Peifeng XU , et al . Bidirectional Droop Control of Hybrid Microgrid Interface Converter Based on Sliding Mode Control[J]. Distributed Energy Resources. 2024, 9(4): 23-32 https://doi.org/10.16513/j.2096-2185.DE.2409403

References

[1]
黄远明,张玉欣,夏赞阳,等. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报2023, 57(4): 432-441.
HUANG Yuanming, ZHANG Yuxin, XIA Zanyang, et al. Power system planning considering demand response resources and capacity value of energy storage [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 432-441.
[2]
苑文凯,郑天文,陈来军,等. 基于耗散理论的分布式发电组网系统小干扰稳定性分析方法[J]. 高电压技术2021, 47(10): 3497-3504.
YUAN Wenkai, ZHENG Tianwen, CHEN Laijun, et al. Small-signal stability analysis method of grid-forming distributed generation system based on the dissipation theory [J]. High Voltage Technology, 2021, 47(10): 3497-3504.
[3]
EAJAL A A, YAZDAVAR A H, EL-SAADANY E F, et al. Optimizing the droop characteristics of hybrid AC/DC microgrids for precise power sharing[J]. IEEE Systems Journal, 2021, 15(1): 560-569.
[4]
嘉言,施凯,徐培凤,等. 交直流混合微电网接口变换器改进型双向下垂控制策略[J]. 分布式能源2023, 8(4): 1-10.
JIA Yan, SHI Kai, XU Peifeng, et al. Improved bidirectional droop control of hybrid AC-DC microgrid interface converter [J]. Distributed Energy, 2023, 8(4): 1-10.
[5]
赵多,贾燕冰,任春光,等. 基于双向BIC的混合微电网交直流母线电压统一控制策略[J]. 电网技术2021, 45(8): 3105-3114.
ZHAO Duo, JIA Yanbing, REN Chunguang, et al. Unified control strategy of AC/DC bus voltage in hybrid microgrid based on bidirectional interfacing converter[J]. Power System Technology, 2021, 45(8): 3105-3114.
[6]
SHEN X, TAN D, SHUAI Z, et al. Control techniques for bidirectional interlinking converters in hybrid microgrids: Leveraging the advantages of both AC and DC[J]. IEEE Power Electronics Magazine, 2019, 6(3): 39-47.
[7]
MALIK S M, AI X, SUN Y, et al. Voltage and frequency control strategies of hybrid AC/DC microgrid: A review[J]. IET Generation, Transmission and Distribution, 2017, 11(2): 303-313.
[8]
高泽,杨建华,季宇,等. 交直流混合微电网接口变换器双向下垂控制[J]. 南方电网技术2015, 9(5): 82-87.
GAO Ze, YANG Jianhua, JI Yu, et al. Bidirectional droop control of AC/DC hybrid microgrid interlinking converter[J]. Southern Power System Technology, 2015, 9(5): 82-87.
[9]
LIU Z, MIAO S, KANG Y, et al. A bidirectional droop control strategy for the hybrid microgrid with AC/DC distributed generation integration[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). May 31—June 02, 2018, IEEE, Wuhan, China, 2018: 1762-1767.
[10]
LOH P C, LI D, CHAI Y K, et al. Autonomous operation of hybrid microgrid with AC and DC subgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2214-2223.
[11]
田浩,黄文焘,余墨多,等. 交直流混合独立微网互联变换器自适应双向下垂控制策略[J]. 中国电机工程学报2022, 42(19): 7063-7074.
TIAN Hao, HUANG Wentao, YU Moduo, et al. Adaptive bidirectional droop control strategy for the interlinking converter in the islanding hybrid AC/DC microgrids[J]. Proceedings of the CSEE, 2022, 42(19): 7063-7074.
[12]
盛德刚,徐运兵,王晓丹,等. 孤岛运行模式下的低压微电网控制策略[J]. 电气技术2018, 19(1): 34-39.
SHENG Degang, XU Yunbing, WANG Xiaodan, et al. Control strategy of low voltage micro-grid in island mode[J]. Electrical Technology, 2018, 19(1): 34-39.
[13]
MOHAMMADI F, MOHAMMADI I B, GHAREHPETIAN G B, et al. Robust control strategies for microgrids: A review[J]. IEEE Systems Journal, 2022, 16(2): 2401-2412.
[14]
FATHI A, SHAFIEE Q, BEVRANI H. Robust frequency control of microgrids using an extended virtual synchronous generator[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6289-6297.
[15]
李娟,金焕,任于涵. 微电网模式切换的转动惯量自适应VSG控制策略[J]. 分布式能源2019, 4(4): 1-9.
LI Juan, JIN Huan, REN Yuhan. Moment of inertia adaptive VSG control strategy for microgrid mode switching[J]. Distributed Energy, 2019, 4(4): 1-9.
[16]
WU W, CHEN Y, LUO A, et al. A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 6005-6016.
[17]
伍文华,陈燕东,罗安,等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报2017, 37(2): 360-372.
WU Wenhua, CHEN Yandong, LUO An, et al. A virtual inertia control strategy for bidirectional grid-connected converters in DC microgrids [J]. Proceedings of the CSEE, 2017, 37(2): 360-372.
[18]
祝钧,李瑞生,毋炳鑫,等. 交直流混合微电网接口变换器虚拟同步发电机控制方法[J]. 电力系统保护与控制2017, 45(11): 28-34.
ZHU Jun, LI Ruisheng, WU Bingxin, et al. Virtual synchronous generator operation of interlinking converter between AC and DC microgrids[J]. Power System Protection and Control, 2017, 45(11): 28-34.
[19]
WANG J, HUANG W, TAI N, et al. A bidirectional virtual inertia control strategy for the interconnected converter of standalone AC/DC hybrid microgrids[J]. IEEE Transactions on Power Systems, 2024, 39(1): 745-754.
[20]
赵郅毅,许寅,吴翔宇,等. 含异构微源的混合型孤岛微电网暂态有功响应分析与控制策略[J/OL]. 电工技术学报,1-14. (2023-11-21)[2024-02-05].
ZHAO Zhiyi, XU Yin, WU Xiangyu, et al. Transient active power response analysis and control strategy of hybrid island microgrid containing heterogeneous microsources[J/OL]. Transactions of China Electrotechnical Society: 1-14. (2023-11-21)[2024-02-05].
[21]
杜燕,言明明,王鑫,等. 交直流子网双边惯量约束下互联变流器动态功率控制策略[J]. 电力系统自动化2023, 47(4): 172-179.
DU Yan, YAN Mingming, WANG Xin, et al. Dynamic power control strategy for interlinking converter under bilateral inertia constraints in AC/DC subgrid[J]. Automation of Electric Power Systems, 2023, 47(4): 172-179.
[22]
毛颖群,张建平,程浩忠,等. 考虑频率安全约束及风电综合惯性控制的电力系统机组组合[J]. 电力系统保护与控制2022, 50(11): 61-70.
MAO Yingqun, ZHANG Jianping, CHENG Haozhong, et al. Unit commitment of a power system considering frequency safety constraint and wind power integrated inertial control[J]. Power System Protection and Control, 2022, 50(11): 61-70.
[23]
施静容,李勇,贺悝,等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报2020, 35(2): 337-345.
SHI Jingrong, LI Yong, HE Li, et al. A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Elec-trotechnical Society, 2020, 35(2): 337-345.
[24]
刘彦呈,吕旭,张勤进,等. 基于多滑模变结构的双向并网变换器虚拟惯性控制策略[J]. 电力建设2022, 43(7): 121-130.
LIU Yancheng, LV Xu, ZHANG Qinjin, et al. Virtual inertia control strategy of bidirectional grid-connected converter applying multiple sliding mode variable structure control[J]. Electric Power Construction, 2022, 43(7): 121-130.
[25]
张鑫,赖伟坚,林泽宏,等. 光伏逆变器无源分数阶滑动模态控制器设计[J]. 电力系统保护与控制2019, 47(24): 145-153.
ZHANG Xin, LAI Weijian, LIN Zehong, et al. Passive fractional-order sliding-mode controller design for PV inverters[J]. Power System Protection and Control, 2019, 47(24): 145-153.
[26]
李鹏宇,郑涛,杨畅,等. 基于滑模一致性的多并联互联变流器分布式鲁棒功率控制策略[J]. 电网技术2023, 7(88): 1-11.
LI Pengyu, ZHENG Tao, YANG Chang, et al. Distributed robust power control strategy for parallel interlinking converters based on sliding mode consistency[J]. Power System Technology, 2019, 7(88): 1-11.
[27]
ORDONO A, UNAMUNO E, BARRENA J A, et al. Interlinking converters and their contribution to primary regulation: A review[J]. International Journal of Electrical Power & Energy Systems, 2019, 111: 44-57.
[28]
杨继鑫,王久和,王勉,等. 基于无源控制的双向并网变换器虚拟惯性控制策略[J]. 高电压技术2021, 47(4): 1295-1303.
YANG Jixin, WANG Jiuhe, WANG Mian, et al. Virtual inertia control strategy of bidirectional grid-connected converter based on passivity-based control[J]. High Voltage Engineering, 2021, 47(4): 1295-1303.
[29]
程启明,陈颖,程尹曼,等. 基于MMC的统一潮流控制器反演滑模控制策略[J]. 智慧电力2023, 51(6): 41-48.
CHENG Qiming, CHEN Ying, CHENG Yinman, et al. Backstepping sliding mode control strategy for unified power flow controller based on MMC[J]. Smart Power, 2023, 51(6): 41-48.
[30]
郭亦宗,郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术2020, 41(6): 650-658.
GUO Yizong, GUO Chuangxin. Security control strategy of micro-grid between grid-connected and off-grid based on virtual synchronous generator[J].Power Generation Technology202041(6):650-658.

Funding

National Natural Science Foundation of China(52177045)
Jiangsu University Superiority Discipline Construction (Phase Ⅲ) Project(PAPD-2018-87)
PDF(1640 KB)

Accesses

Citation

Detail

Sections
Recommended

/