PDF(2181 KB)
Solar Radiation Forecast of Photovoltaic Station Using Time-Division and Improved Stacking Model
YANG Jiahao,ZHANG Lian,WANG Shibin,YANG Yujie,LIANG Fazheng
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 11-21.
PDF(2181 KB)
PDF(2181 KB)
Solar Radiation Forecast of Photovoltaic Station Using Time-Division and Improved Stacking Model
To enhance the forecasting capability of surface solar radiation under complex weather conditions, a prediction method based on time-specific forecasting and model fusion is proposed. First, astronomical radiation features are supplemented to reflect the periodicity of solar radiation intensity, and a radiation attenuation coefficient is introduced through weather classification methods to correct astronomical radiation, thereby strengthening its correlation. Secondly, a correlation analysis of the data reveals that surface irradiance is primarily closely related to astronomical radiation height, while other meteorological factors exhibit lower correlations. Consequently, the dataset is divided into several subsets based on temporal nodes to alter data distribution and improve the correlation among other key features.Given that using a single model for predictions across different datasets may lead to discrepancies in results, we employ Stacking algorithms to enhance model generalization capabilities. Additionally, by incorporating cross-validation and augmenting data with added Gaussian noise techniques, we optimize the Stacking model.Experimental results indicate that the optimized Stacking model effectively improves generalization ability while reducing overfitting risks; this proposed method can accurately identify the randomness of surface irradiance under complex weather conditions with an accuracy rate of 95.8% and a qualification rate of 96.7%, representing an improvement of 4% to 19% compared to traditional forecasting methods.
surface solar irradiance / feature expansion / Stacking model / data augmentation / time-sharing prediction
| [1] |
罗眉. “双碳”目标与绿色低碳优势产业高质量发展[J]. 山西财经大学学报,2023, 45(): 50-52, 330.
S2
S2
|
| [2] |
|
| [3] |
姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报,2022, 43(10): 524-535.
|
| [4] |
刘润鹏,宋禹飞,王宏,等. 太阳能光热发电标准体系研究[J]. 广东电力,2023, 36(10): 130-136.
|
| [5] |
张乾,辛晓洲,张海龙,等. 基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析[J]. 地球信息科学学报,2018, 20(1): 119-127.
|
| [6] |
|
| [7] |
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术,2022, 43(3): 392-404.
|
| [8] |
郭宴秀,苏建军,马临超,等. 基于IT2FLC的HESS太阳能充电站功率分配策略[J]. 智慧电力,2022, 50(5): 62-68, 76.
|
| [9] |
蔡永翔,杨安黔,付宇,等. 面向分布式光伏并网和电能替代的低压配电网自适应控制[J]. 可再生能源,2023, 41(10): 1343-1351.
|
| [10] |
惠慧,李蕊,朱逸镝,等. 含高比例分布式光伏的配电网多目标概率规划方法[J]. 电测与仪表,2023, 60(11): 2-10.
|
| [11] |
王鑫淼,马志勇,周旺潇,等. 光伏发电系统碳中和及其影响因素[J]. 资源科学,2022, 44(8): 1735-1744.
|
| [12] |
|
| [13] |
张东海,李忠燕,丁立国,等. 影响光伏发电功率的气象因子分析及其预测检验[J]. 沙漠与绿洲气象,2023, 17(3): 157-164.
|
| [14] |
周勇. 逐日太阳辐射估算模型及室外计算辐射研究[D]. 西安:西安建筑科技大学,2019.
|
| [15] |
金存银,张淑花,
|
| [16] |
|
| [17] |
赵书强,尚煜东,杨燕燕,等. 基于长短期记忆神经网络的地表太阳辐照度预测[J]. 太阳能学报,2021, 42(3): 383-388.
|
| [18] |
杨德州,李锦键,吕金历,等. 基于改进CNN的光热电场太阳直接法向辐射预测研究[J]. 可再生能源,2021, 39(2): 182-188.
|
| [19] |
|
| [20] |
蒋锋,杨嘉伟. 基于多目标优化集成学习的短期太阳辐射预测[J]. 云南大学学报(自然科学版), 2021, 43(3): 451-461.
|
| [21] |
|
| [22] |
臧海祥,张越,程礼临,等. 基于ICEEMDAN-LSTM和残差注意力的短期太阳辐照度预测[J]. 太阳能学报,2023, 44(12): 175-181.
|
| [23] |
|
| [24] |
|
| [25] |
王飞,米增强,甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报,2013, 33(34): 75-82, 14.
|
| [26] |
全国气象防灾减灾标准化技术委员会降水量等级:GB/T 28592—2012[S]. 北京:中国标准出版社,2012.
|
| [27] |
|
| [28] |
张未,余成波,王士彬,等. 基于VMD-LSTM-LightGBM的多特征短期电力负荷预测[J]. 南方电网技术,2023, 17(2): 74-81.
|
| [29] |
徐武,刘洋,沈智方,等. 基于改进局部自注意力机制的VMD-GRU模型短期风电功率预测[J]. 电网与清洁能源,2023, 39(3): 83-92.
|
/
| 〈 |
|
〉 |