PDF(2667 KB)
Ultra-Short-Term Photovoltaic Power Prediction Based on SVMD-BO-BiTCN
HE Jinlin,HAO Jianxin,SU Chengfei,TU Zhuangzhuang
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 22-31.
PDF(2667 KB)
PDF(2667 KB)
Ultra-Short-Term Photovoltaic Power Prediction Based on SVMD-BO-BiTCN
Intermittent sunlight leads to significant fluctuations in photovoltaic power generation, resulting in low accuracy in predicting the power output. In this study, a new ultra-short-term photovoltaic power generation forecasting model based on successive variational mode decomposition (SVMD), Bayesian optimization (BO) algorithm, and bidirectional temporal convolutional network (BiTCN) is proposed to improve prediction accuracy. Initially, the raw photovoltaic power generation data is decomposed into multiple power components and a power residual using SVMD to obtain multiple sequences with small fluctuations. Subsequently, the improved BiTCN replaces the temporal convolutional network (TCN) to perform bidirectional feature extraction and prediction of the SVMD decomposition results with low latency. Then, BO algorithm is used to search for BiTCN hyperparameters efficiently, so as to improve the prediction accuracy of each power component and power residual. Finally, the predicted results are summed and reconstructed to achieve ultra-short-term photovoltaic power generation prediction. Experiments demonstrate that the proposed model achieves a 35.18% reduction in root mean square error (RMSE) and a 4.82% increase in coefficient of determination compared to the single TCN model.
photovoltaic power generation / prediction of generating power / deep learning model / successive variational mode decomposition (SVMD)
| [1] |
|
| [2] |
王海峰,徐熠林,徐达艺,等. 基于高清卫星地图影像的配电网分布式屋顶光伏承载力评估[J]. 广东电力,2023, 36(10): 105-113.
|
| [3] |
武江,李建. 超短劲性复合桩基在光伏发电项目中的应用[J]. 内蒙古电力技术,2023, 41(4): 26-31.
|
| [4] |
李英峰,张涛,张衡,等. 太阳能光伏光热高效综合利用技术[J]. 发电技术,2022, 43(3): 373-391.
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
魏骜,茅大钧,韩万里,等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程,2020, 35(4): 203-209.
|
| [9] |
|
| [10] |
|
| [11] |
孟安波,许炫淙,陈嘉铭,等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术,2021, 45(12): 4721-4728.
|
| [12] |
史加荣,殷诏. 基于GRU-BLS的超短期光伏发电功率预测[J]. 智慧电力,2023, 51(9): 38-45.
|
| [13] |
|
| [14] |
|
| [15] |
邢晨,张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报,2023, 44(2): 373-380.
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
杨汪洋,魏云冰,罗程浩. 基于CVMD-TCN-BiLSTM的短期电力负荷预测[J]. 电气工程学报,2024, 19(2): 163-172.
|
| [24] |
|
/
| 〈 |
|
〉 |