Collaborative Optimization Strategy for Integrated Energy System Considering Uncertainties in Source and Load

LI Haoran,YAO Fang,SONG Xianjin

Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 32-40.

PDF(1512 KB)
PDF(1512 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 32-40. DOI: 10.16513/j.2096-2185.DE.2409504
Basic Research

Collaborative Optimization Strategy for Integrated Energy System Considering Uncertainties in Source and Load

Author information +
History +

Abstract

In order to reduce the influence of uncertainty on both sides of the source and load on the security and economy of the integrated energy system (IES), and to improve the flexibility and stability of IES in the face of uncertainties, various strategies for energy storage participation in smoothing out the uncertainty fluctuations are proposed, and a robust model is established for the day-ahead and real-time two-stage cooperative optimization under multiple uncertainties. A robust adjustable factor is added to the model to comprehensively evaluate the system economy and robustness. In the day-ahead phase, a pre-dispatch plan is determined based on the predicted power of new energy and load to realize the power balance at the minimum operating cost. In the real-time phase, the adjustment power of the secondary flexible adjustment equipment is determined according to the new energy output and the actual simulated power of the load to realize power rebalancing at minimum cost. The case study shows that the real-time adjustment of power supply side and energy storage side can better play the synergistic adjustment function of IES to deal with uncertainty; the introduction of robust adjustable factor to portray the uncertainty better balances the economy and security of system operation.

Key words

integrated energy systems (IES) / robust optimization / uncertainty analysis / energy storage flexibility

Cite this article

Download Citations
Haoran LI , Fang YAO , Xianjin SONG. Collaborative Optimization Strategy for Integrated Energy System Considering Uncertainties in Source and Load[J]. Distributed Energy Resources. 2024, 9(5): 32-40 https://doi.org/10.16513/j.2096-2185.DE.2409504

References

[1]
ÖZLEM K, HAKAN Ö. Factors affecting the ecological footprint: A study on the OECD countries[J]. Science of the Total Environment, 2022, 849: 157757-157757.
[2]
李浩斌,陆信辉,周开乐,等. 考虑源荷不确定性的能量枢纽负荷优化调度[J]. 系统工程理论与实践2024, 44(7): 2227-2246.
LI Haobin, LU Xinhui, ZHOU Kaile, et al. Optimal scheduling of energy hub loads considering source-load uncertainty[J]. Systems Engineering Theory and Practice, 2024, 44(7): 2227-2246.
[3]
张冠宇,付炜,陈晨,等. 面向电-气-热综合能源系统的恢复力研究现状与展望[J]. 智慧电力2023, 51(1): 69-77.
ZHANG Guanyu, FU Wei, CHEN Chen, et al. Status and prospects of resilience research for electric-gas-thermal integrated energy system[J]. Smart Power, 2023, 51(1): 69-77.
[4]
亢猛,钟祎勍,石鑫,等. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术2023, 44(1): 25-35.
KANG Meng, ZHONG Yiqing, SHI Xin, et al. Research on two-stage optimization approach of community integrated energy system considering load supply reliability[J]. Power Generation Technology, 2023, 44(1): 25-35.
[5]
龚贤夫,梁秀壮,廖晖,等. 考虑集中式新能源接入的综合能源系统韧性提升研究[J]. 广东电力2023, 36(11): 75-86.
GONG Xianfu, LIANG Xiuzhuang, LIAO Hui, et al. Study on the resilience enhancement of integrated energy systems considering centralised new energy sources[J]. Guangdong Electric Power, 2023, 36(11): 75-86.
[6]
YANG Y, JIALI L, DONGYANG C. Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source-load power interval prediction[J]. Global Energy Interconnection, 2022, 5(5): 564-578.
[7]
LILI H, WANGYU H, CHUAN W, et al. Coordinated restoration optimization of power-gas integrated energy system with mobile emergency sources[J]. Global Energy Inter-connection, 2023, 6(2): 205-227.
[8]
王瑾然,卫志农,张勇,等. 计及不确定性的区域综合能源系统日前多目标优化调度[J]. 电网技术2018, 42(11): 3496-3506.
WANG Jinran, WEI Zhinong, ZHANG Yong, et al. Multi-objective optional day-ahead dispatching for regional integrated energy system considering uncertainty[J]. Power System Technology, 2018, 42(11): 3496-3506.
[9]
邵志芳,赵强,张玉琼. 独立型微电网源荷协调配置优化[J]. 电网技术2021, 45(10): 3935-3946.
SHAO Zhifang, ZHAO Qiang, ZHANG Yuqiong. Source side and load side coordinated configuration optimization for stand-alone micro-grid[J]. Power System Technology, 2021, 45(10): 3935-3946.
[10]
刘敦楠,徐尔丰,刘明光,等. 面向分布式电源就地消纳的园区分时电价定价方法[J]. 电力系统自动化2020, 44(20): 19-28.
LIU Dunnan, XU Erfeng, LIU Mingguang, et al. TOU pricing method for park considering local consumption of distributed generator[J]. Automation of Electric Power Systems, 2020, 44(20): 19-28.
[11]
ZHAO H, WANG X, SIQIN Z, et al. Two-stage optimal dispatching of multi-energy virtual power plants based on chance constraints and data-driven distributionally robust optimization considering carbon trading[J]. Environmental Science and Pollution Research, 2023, 30(33): 79916-79936.
[12]
AMIT R, ASHISH S C K J. An empirical analysis of machine learning algorithms for solar power forecasting in a high dimensional uncertain environment[J]. IETE Technical Review, 2023, 40(4): 558-573.
[13]
JIN H, LI Z, SUN H, et al. A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment[J]. Applied Energy, 2017, 206: 1364-1378.
[14]
ZHANG Q, MU Y, JIA H, et al. Distributionally robust optimization configuration method for island microgrid considering extreme scenarios[J]. Energy and AI, 2024, 17: 100389-100389.
[15]
吕海鹏,希望·阿不都瓦依提,孟令鹏. 计及源-荷预测不确定性的微电网双级随机优化调度[J]. 电力自动化设备2022, 42(9): 70-78.
Haipeng, XIWANG Abuduwayiti, MENG Lingpeng. Two-level stochastic optimal scheduling of microgrid considering uncertainty of source-load prediction[J]. Electric Power Automation Equipment, 2022, 42(9): 70-78.
[16]
瞿凯平,苏伟行,姜宇轩,等. 基于点估计仿射可调鲁棒优化的含储能电力系统实时调度[J]. 电网技术2024, 48(1): 207-219.
QU Kaiping, SU Weihang, JIANG Yuxuan, et al. Real-time power dispatch with storages using point estimation-based affinely adjustable robust optimization[J]. Power System Technology, 2024, 48(1): 207-219.
[17]
王骞,张学广,朱玲,等. 含整体煤气化燃料电池-碳捕集电厂的风火储系统分布鲁棒调度方法[J]. 中国电机工程学报2024, 44(9): 3573-3588.
WANG Qian, ZHANG Xueguang, ZHU Ling, et al. Distributionally robust dispatch for wind-thermal-energy storage system with integrated gasification fuel cell-carbon capture plant[J]. Proceedings of the CSEE, 2024, 44(9): 3573-3588.
[18]
陈灵敏,吴杰康,张文杰,等. 基于鲁棒优化的微能源网综合需求响应协同调度策略[J]. 电力系统自动化2021, 45(21): 159-169.
CHEN Lingmin, WU Jiekang, ZHANG Wenjie, et al. Robust optimization based coordinated scheduling strategy for integrated demand response in micro energy grid[J]. Automation of Electric Power Systems, 2021, 45(21): 159-169.
[19]
蒋超凡,艾欣. 计及多能耦合机组不确定性的综合能源系统运行优化模型研究[J]. 电网技术2019, 43(8): 2843-2854.
JIANG Chaofan, AI Xin. Integrated energy system operation optimization model considering uncertainty of multi-energy coupling units[J]. Power System Technology, 2019, 43(8): 2843-2854.
[20]
杜刚,赵冬梅,刘鑫. 计及风电不确定性优化调度研究综述[J]. 中国电机工程学报2023, 43(7): 2608-2627.
DU Gang, ZHAO Dongmei, LIU Xin. Research review on optimal scheduling considering wind power uncertainty[J]. Proceedings of the CSEE, 2023, 43(7): 2608-2627.
[21]
岳文全,姚方,文福拴. 考虑光热电站的电热氢综合能源系统协调优化策略[J]. 分布式能源2023, 8(4): 29-39.
YUE Wenquan, YAO Fang, WEN Fushuan. Coordinated optimization strategy for electric-heat-hydrogen integrated energy system considering concentrating solar power[J]. Distributed Energy, 2023, 8(4): 29-39.

Funding

Shanxi Scholarship Council of China(2022-005)
PDF(1512 KB)

Accesses

Citation

Detail

Sections
Recommended

/