Experimental Study on Dust Removal by High Pressure Air Flow in Mirror of Trough Condenser

LIU Chao,SU Rilige,WANG Yahui,ZHANG Jianguang,SHI Wei

Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 59-67.

PDF(5914 KB)
PDF(5914 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 59-67. DOI: 10.16513/j.2096-2185.DE.2409507
Application Technology

Experimental Study on Dust Removal by High Pressure Air Flow in Mirror of Trough Condenser

Author information +
History +

Abstract

The mirror area dust of solar concentrating system not only reduces the photoelectric conversion efficiency, but also shortens the service life of the system. Therefore, a trough type condenser mirror compressed air dust removal system is built. The crystal structure, size distribution, element types and proportion of the dust particles were analyzed by scanning electron microscope, laser particle size analyzer, X-ray difftometer and X-ray fluorescence spectrometer. Through the compressed air dust removal system, the influence of inlet pressure, mirror inclination and dust removal height on dust removal efficiency is studied. The results show that the particles smaller than 10 μm in diameter account for more than half of the dust particles, and quartz and muscotite are the main material components in the dust particles. The content of elements in the dust particles was significantly different, with the highest content of oxygen, followed by silicon, and the lowest content of hydrogen. The dust removal efficiency increases with the increase of dust removal pressure, the increase of the inclination angle of the mirror arrangement, and the decrease of the dust removal angle and height of the air knife nozzle, and the highest dust removal efficiency can reach 98.94%. At this time, the dust accumulation density of the mirror is 0.03 g/m2, and the reflectance is 98.94%.

Key words

trough concentrating heat absorption system / dust particles / material composition / compressed air dust removal / dust removal efficiency

Cite this article

Download Citations
Chao LIU , Rilige SU , Yahui WANG , et al . Experimental Study on Dust Removal by High Pressure Air Flow in Mirror of Trough Condenser[J]. Distributed Energy Resources. 2024, 9(5): 59-67 https://doi.org/10.16513/j.2096-2185.DE.2409507

References

[1]
赵耀华,鲁啸山,刁彦华,等. 复合抛物面聚光式太阳能空气集蓄热一体化系统性能研究[J]. 北京工业大学学报2022, 48(7): 750-761.
ZHAO Yaohua, LU Xiaoshan, DIAO Yanhua, et al. Performance investigation of compound parabolic concentrator integrated collector-storage solar air heater[J]. Journal of Beijing University of Technology, 2022, 48(7): 750-761.
[2]
卢乃兵,刘万军,尹航. 高原地区槽式光热电站导热油泄漏监测装置应用研究[J]. 内蒙古电力技术2022, 40(6): 13-16.
LU Naibing, LIU Wanjun, YIN Hang. Research on application of thermal conductive oil leakage monitoring device in trough photothermal power station in plateau area[J]. Inner Mongolia Electric Power, 2022, 40(6): 13-16.
[3]
常泽辉,刘雪东,刘静,等. 吸收体形状对太阳能复合多曲面聚光器光热性能的影响[J]. 光学学报2022, 42(5): 32-41.
CHANG Zehui, LIU Xuedong, LIU Jing, et al. Influence of absorber shape on photothermal performance of solar compound multi-surface concentrator[J]. Acta Optica Sinica, 2022, 42(5): 32-41.
[4]
郭宴秀,苏建军,马临超,等. 基于IT2FLC的HESS太阳能充电站功率分配策略[J]. 智慧电力2022, 50(5): 62-68, 76.
GUO Yanxiu, SU Jianjun, MA Linchao, et al. Power allocation strategy of hybrid energy storage solar charging station based on IT2FLC[J]. Smart Power, 2022, 50(5): 62-68, 76.
[5]
PANJA S K, DAS B, MAHESH V. Performance evaluation of a novel parabolic trough solar collector with nanofluids and porous inserts[J]. Applied Thermal Engineering, 2025, 258: 124495.
[6]
王杨,轩雪飞,朱路,等. 超宽带高吸收超材料太阳能吸收器设计[J]. 中国激光2022, 49(9): 50-61.
WANG Yang, XUAN Xuefei, ZHU Lu, et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 2022, 49(9): 50-61.
[7]
徐立,孙飞虎,李钧,等. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术2023, 44(2): 229-234.
XU Li, SUN Feihu, LI Jun, et al. Study on heat loss factors of parabolic trough solar collectors[J]. Power Generation Technology, 2023, 44(2): 229-234.
[8]
董晓明,吴玉庭,张灿灿,等. 槽式太阳能聚光集热器热力学分析及聚光集热系统动态特性仿真[J]. 北京工业大学学报2024, 50(8): 1007-1026.
DONG Xiaoming, WU Yuting, ZHANG Cancan, et al. Thermodynamic analysis of trough solar collector and simulation of dynamic characteristics of solar trough concentration system[J]. Journal of Beijing University of Technology, 2024, 50(8): 1007-1026.
[9]
刘润鹏,宋禹飞,王宏,等. 太阳能光热发电标准体系研究[J]. 广东电力2023, 36(10): 130-136.
LIU Runpeng, SONG Yufei, WANG Hong, et al. Research on solar thermal power generation standard system[J]. Guangdong Electric Power, 2023, 36(10): 130-136.
[10]
WANG Z, YUE S, CHAN W, et al. Theoretical and experimental study on the effect of the heat shield on the trough solar cavity receiver in alpine areas[J]. International Journal of Thermal Sciences, 2025, 208: 109445.
[11]
王迪,王华. 天气对槽式太阳能集热系统热性能的影响[J]. 太阳能2023(12): 59-66.
WANG Di, WANG Hua. Effect of weather on thermal performance of trough solar collector system[J]. Solar Energy, 2023(12): 59-66.
[12]
ZHAO N, YAN S, ZHANG N, et al. Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system[J]. Renewable Energy, 2022, 191: 732-746.
[13]
LIU X, YUE S, LU L, et al. Investigation of the dust scaling behaviour on solar photovoltaic panels[J]. Journal of Cleaner Production, 2021, 295: 126391.
[14]
ZHAO X, CHEN Z, YAN S, et al. Influence of dust accumulation on the solar reflectivity of a linear Fresnel reflector[J]. Journal of Thermal Science, 2021, 30(5): 1526-1540.
[15]
赵晓燕,闫素英,邢耀栋,等. 基于镜面积尘的线性菲涅尔系统聚光性能研究[J]. 太阳能学报2022, 43(5): 206-212.
ZHAO Xiaoyan, YAN Suying, XING Yaodong, et al. Study on condensing performance of lfr system based on mirror dust accumulation[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 206-212.
[16]
王亚辉,苏日力格,赵宁,等. 镜面积尘物化特性及其对菲涅耳高倍聚光光伏及光热系统的影响[J]. 光学学报2024, 44(5): 109-119.
WANG Yahui, SU Rilige, ZHAO Ning, et al. Physicochemical characteristics of accumulated dust on mirror surface and its influence on Fresnel high magnification focused photovoltaic/thermal system[J]. Acta Optica Sinica, 2024, 44(5): 109-119.
[17]
LI X, WANG J, LIU Y, et al. Effect of photovoltaic panel electric field on the wind speed required for dust removal from the panels[J]. Chinese Physics B, 2023, 32(8): 084103.
[18]
陈泽粮,张宏立. 基于压缩空气的太阳能电池板除尘建模研究[J]. 计算机仿真2018, 35(9): 79-83.
CHEN Zeliang, ZHANG Hongli. Research on dust removal mechanism of airflow on solar panel[J]. Computer Simulation, 2018, 35(9): 79-83.
[19]
SALARI A, HAKKAKI-FARD A. A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems[J]. Renewable Energy, 2019, 135: 437-449.
[20]
ØVRUM ØMARCHETTI J M, KELESOGLU S, et al. Comparative analysis of site-specific soiling losses on PV power production[J]. IEEE Journal of Photovoltaics, 2021, 11(1): 158-163.
[21]
ZHAO N, WU Z, GAO H, et al. Experimental analysis of the optical loss of a dusty Fresnel lens with a novel solar flux test system[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101656.
[22]
ZHAO N, YAN S, MA X, et al. Analysis of the light concentration loss of a Fresnel CPV/T system after dust accumulation[J]. Journal of Thermal Science, 2022, 31(6): 1868-1880.
[23]
CHEN J, PAN G, OUYANG J, et al. Study on impacts of dust accumulation and rainfall on PV power reduction in East China[J]. Energy, 2020, 194: 116915.
[24]
ZITOUNI H, MERROUNI A A, REGRAGUI M, et al. Experimental investigation of the soiling effect on the performance of monocrystalline photovoltaic systems[J]. Energy Procedia, 2019, 157: 1011-1021.
[25]
FAN S, WANG X, CAO S, et al. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels[J]. Energy, 2022, 252: 123927.
[26]
闫素英,常征,王峰,等. 积尘对槽式太阳能聚光器焦面能流密度分布的影响及聚光优化[J]. 光学学报2017, 37(7): 239-246.
YAN Suying, CHANG Zheng, WANG Feng, et al. Effect of dust accumulation on focal energy flux density distribution of trough solar concentrator and concentration optimization[J]. Acta Optica Sinica, 2017, 37(7): 239-246.
[27]
金胜利,郭振兴,干建丽,等. 光伏电站组件清洁技术研究综述[J]. 能源工程2023, 43(5): 1-11.
JIN Shengli, GUO Zhenxing, GAN Jianli, et al. Review of research on cleaning technology of the PV module in photovoltaic power stations[J]. Energy Engineering, 2023, 43(5): 1-11.
[28]
ŞEVIK S, AKTAŞ A. Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays[J]. Renewable Energy, 2022, 181: 490-503.
[29]
MAJEED R, WAQAS A, SAMI H, et al. Experimental investigation of soiling losses and a novel cost-effective cleaning system for PV modules[J]. Solar Energy, 2020, 201: 298-306.
[30]
MOUSAVI S, FARAHANI G. Introducing a new method of automatic cleaning of the PV array surface using a suction robot[J]. Mechatronics, 2022, 85: 102845.
[31]
姚关雄,王力,吴宇航,等. 太阳能板除尘机器人设计研究[J]. 机械工程与自动化2023(2): 94-96.
YAO Guanxiong, WANG Li, WU Yuhang, et al. Design and research of solar panel dust removal robot[J]. Mechanical Engineering & Automation, 2023(2): 94-96.
[32]
EL-MAHALLAWI I, ELSHAZLY E, RAMADAN M, et al. Solar PV panels-self-cleaning coating material for Egyptian climatic conditions[J]. Sustainability, 2022, 14(17): 11001.
[33]
张永伟. 纳米自清洁薄膜在光伏电站中的应用[J]. 太阳能2021(12): 43-50.
ZHANG Yongwei. Application of nano self-cleaning film in pv power station[J]. Solar Energy, 2021(12): 43-50.
[34]
杨鲲鹏,杜道强,王伟,等. 一种光伏板自除尘清扫系统的研究[J]. 微型电脑应用2023, 39(6): 82-85.
YANG Kunpeng, DU Daoqiang, WANG Wei, et al. Study on a self-dust removal system for photovoltaic panels[J]. Microcomputer Applications, 2023, 39(6): 82-85.

Funding

Inner Mongolia Natural Science Foundation(2023LHMS05047)
Basic Research Fund Project of Inner Mongolia Affiliated Universities(JY20240049)
PDF(5914 KB)

Accesses

Citation

Detail

Sections
Recommended

/