PDF(1346 KB)
Joint Estimation of Battery SOC and SOH Based on Improved TOPSIS-Fuzzy Bayesian Network
LEI Xiandao,LI Jie,ZHANG Erxin
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 68-75.
PDF(1346 KB)
PDF(1346 KB)
Joint Estimation of Battery SOC and SOH Based on Improved TOPSIS-Fuzzy Bayesian Network
In order to realize the dynamic assessment of battery state under the whole life cycle of energy storage batteries, and to improve the adaptability of the lithium-ion battery model and the accuracy of state estimation under complex working conditions, a joint estimation method of battery state of charge (SOC) and state of health (SOH) based on the improved technique for order preference by similarity to an ideal solution (TOPSIS)-fuzzy Bayesian network is proposed. The equivalent circuit model of the battery is constructed by applying the multi-order resistor-capacitance circuit (RC) model and the node-branching framework, and the parallel loop in the equivalent circuit model of the second-order RC battery is characterized by Kirchhoff's law and Ohm's law to construct the spatial equations of state and the equivalent output equations. The constructed equations of state are discretized, and the discretized state-space equation of the battery model is analyzed by defining the discretized zero-input response and zero-state response of the parallel independent loop. The expert scoring method is introduced into the TOPSIS algorithm for the quantitative estimation of battery SOC, and combined with the Bayesian network that integrates into the fuzzy scale, the corresponding SOC values in the observed samples of the batteries are calculated from the battery SOH values under the same time distribution scale, so as to realize the joint estimation of battery SOH and SOC. The experimental results show that the proposed method can effectively estimate the results of battery SOC and SOH in different discrete spatial scales, and the estimation method has good accuracy and high precision.
battery state of charge (SOC) / battery state of health (SOH) / technique for order preference by similarity to an ideal solution (TOPSIS) / fuzzy Bayesian network / joint estimation
| [1] |
赵靖英,胡劲,张雪辉,等. 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报,2023, 38(17): 4551-4563.
|
| [2] |
王波,陈东东,张锦霞,等. 基于时空分布映射的大规模电池健康状态研究[J]. 智慧电力,2022, 50(6): 85-91.
|
| [3] |
赵珈卉,田立亭,程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术,2023, 43(1): 1-17.
|
| [4] |
吴忠强,陈海佳. 基于自适应H2/H∞滤波的锂电池SOC和SOH联合估计[J]. 计量学报,2023, 44(11): 1719-1727.
|
| [5] |
党少佳,赵松,霍红岩,等. 电池储能参与火电机组一次调频设计与应用[J]. 内蒙古电力技术,2023, 41(3): 36-42.
|
| [6] |
崔树辉,周贺,黄振兴,等. 动力电池梯次利用关键技术与应用综述[J]. 广东电力,2023, 36(1): 9-19.
|
| [7] |
王志福,罗崴,闫愿,等. 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报,2023, 43(6): 575-584.
|
| [8] |
谭泽富,彭涛,代妮娜,等. 基于改进DAEKF的锂电池SOC和SOH联合估计[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4): 760-766.
|
| [9] |
|
| [10] |
|
| [11] |
申江卫,周灿彪,舒星,等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术,2023, 12(9): 2904-2916.
|
| [12] |
谢奕展,程夕明. 锂离子电池简化电化学模型理论误差分析研究[J]. 机械工程学报,2022, 58(22): 37-55.
|
| [13] |
叶丽华,何洲,施烨璠,等. 基于BASOA-IEKF融合算法的电池SOC估计[J]. 江苏大学学报(自然科学版), 2023, 44(6): 638-643, 650.
|
| [14] |
黎桂树,谢松,平现科. 宽温域下钛酸锂锂离子电池的SOC估算[J]. 电池,2023, 53(1): 24-28.
|
| [15] |
余杰,廖思阳,徐箭,等. 考虑环境温度的磷酸铁锂电池SOC实时修正及频率控制方法[J]. 电工技术学报,2023, 38(17): 4564-4573.
|
| [16] |
吴逸洲,刘艳,祝现染,等. 基于多模型融合的锂离子电池SOC自适应估计[J]. 电源技术,2023, 47(9): 1158-1163.
|
| [17] |
吕杰,王敬翰,宋文吉,等. 储能用锂离子电池电热耦合模型研究进展[J]. 电池,2023, 53(6): 668-672.
|
| [18] |
饶宇飞,李朝晖,滕卫军,等. 基于移动峰值面积的梯次利用动力锂电池健康状态评估[J]. 武汉大学学报(工学版), 2022, 55(5): 510-516.
|
| [19] |
李艳,雷佳琦. 扰动作用下的多移动机器人编队模型预测控制[J]. 信息与控制,2023, 52(2): 166-175.
|
| [20] |
李丽,卢延荣,于晓. 参数不确定离散时间系统的有限时间输出反馈预见控制器设计[J]. 控制与决策,2021, 36(9): 2074-2084.
|
| [21] |
赵中华,晏晓锋,童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66.
|
| [22] |
吴岩,田培根,肖曦,等. 基于前兆信息的可重构梯次电池储能系统安全风险评估[J]. 太阳能学报,2022, 43(4): 36-45.
|
| [23] |
郭金智,潘子峻,袁绍军,等. 基于改进电导增量法的变步长MPPT算法[J]. 电气传动,2022, 52(20): 50-56.
|
| [24] |
茹鑫鑫,高晓光,王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术,2023, 45(2): 444-452.
|
/
| 〈 |
|
〉 |