PDF(4891 KB)
A Stepwise Inertial Control Method for Photovoltaic Grid Frequency Adjustment Based on Improved Smith Predictor and Big Data
YANG Lina,MA Meifang,XUE Gaoqian,LIU Changsheng,SHEN Shaohui
Distributed Energy ›› 2024, Vol. 9 ›› Issue (5) : 85-92.
PDF(4891 KB)
PDF(4891 KB)
A Stepwise Inertial Control Method for Photovoltaic Grid Frequency Adjustment Based on Improved Smith Predictor and Big Data
In the process of frequency adjustment in photovoltaic power grids, relying on conventional Smith predictive controllers to achieve grid frequency adjustment control has a strong dependence on the accuracy of the model, and the maximum rate of change of frequency (RoCoF) after the implementation of the control strategy is large. Therefore, a stepwise inertial control method for photovoltaic grid frequency adjustment based on an improved Smith predictor and big data is proposed. First, the historical meteorological data and photovoltaic power grid operation data are collected, and the density peak clustering algorithm in the field of big data analysis is applied for partition processing, and then the data of similar days are screened into the long and short term memory network to predict the power change of photovoltaic power generation in the future. Then, based on the idea of stepwise inertia control, the frequency adjustment control strategy of power grid is designed, including short-time overdrive, speed recovery and other stages. The fuzzy adaptive proportion-integration-differentiation (PID) controller is integrated into the conventional Smith predictor. Thus, the optimized Smith predictor is upgraded. Finally, under the condition of not being affected by the change of the controlled model, the stepwise inertial frequency adjustment control is completed according to the predictive compensation principle, and the sparrow search algorithm is used to solve the optimal control parameters. The experimental results show that after the implementation of the control method, the maximum RoCoF during the operation of the photovoltaic power grid is only 0.086 Hz/s, which effectively reduces the dependence on the accuracy of the model and ensures the stable operation of the power system.
improved Smith predictor / big data / photovoltaic power grid / frequency adjustment / stepwise inertial control / parameter optimization
| [1] |
屈兴武,王栋,马天诚,等. 支撑电网频率稳定的双馈风机一次调频控制需求分析[J]. 智慧电力,2023, 51(10): 38-46.
|
| [2] |
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术,2022, 43(3): 392-404.
|
| [3] |
刘宇,赵映,李世朝. 光伏发电系统在火力发电厂的应用研究[J]. 内蒙古电力技术,2022, 40(2): 36-39.
|
| [4] |
李慧玲,王维军,廖亚特,等. 基于电动汽车充电管理的村级光伏发电系统公用储能配置优化研究[J]. 广东电力,2023, 36(12): 30-38.
|
| [5] |
|
| [6] |
陈鹏,王玮,杨建青,等. 基于多尺度分解的风火储协同调频控制策略[J]. 太阳能学报,2024, 45(3): 428-435.
|
| [7] |
黎萌,林章岁,林毅,等. 基于改进模型预测控制的分布式储能辅助调频控制方法[J]. 水利水电技术,2023, 54(): 447-456.
S2
S2
|
| [8] |
姚文龙,裴春博,池荣虎,等. 基于无模型自适应控制的船舶微电网二次调频控制策略[J]. 电机与控制学报,2023, 27(3): 135-146.
|
| [9] |
余洋,张瑞丰,陆文韬,等. 基于稳定经济模型预测控制的集群电动汽车辅助电网调频控制策略[J]. 电工技术学报,2022, 37(23): 6025-6040.
|
| [10] |
颜全椿,顾文,范立新,等. 储能协助风电机组参与电网调频控制策略研究[J]. 现代电力,2022, 39(5): 537-546.
|
| [11] |
邹燕,于国强,罗凯明,等. 基于改进粒子群的火储联合AGC调频控制仿真[J]. 计算机仿真,2022, 39(7): 128-136.
|
| [12] |
徐箭,谭昌奇,廖思阳,等. 考虑需求侧管理的孤岛微电网频率协调控制策略[J]. 武汉大学学报(工学版), 2022, 55(9): 886-893.
|
| [13] |
于琳琳,王传捷,张峰,等. 计及SOC均衡的电池储能参与电网一次调频自适应控制策略研究[J]. 可再生能源,2023, 41(5): 685-691.
|
| [14] |
于昌海,庞腊成,吴继平,等. 计及多点电池储能系统的电网二次调频协同控制[J]. 电力工程技术,2024, 43(1): 68-76.
|
| [15] |
鲁宗相,李佳明,乔颖,等. 新能源场站快速频率支撑能力评估研究现状与技术展望[J]. 电力系统自动化,2024, 48(10): 1-19.
|
| [16] |
高丙团,胡正阳,王伟胜,等. 新能源场站快速有功控制及频率支撑技术综述[J]. 中国电机工程学报,2024, 44(11): 4335-4352.
|
| [17] |
杨昆,郝尧,孙磊,等. 基于综合能源储能渗透率的碳排放调频辅助研究[J]. 电测与仪表,2024, 61(5): 24-30.
|
| [18] |
刘印,陈民权,李京,等. 电力系统低频减载的单调控制特性[J]. 电力自动化设备,2023, 43(7): 182-189.
|
| [19] |
郭强,陈崇德,胡阳,等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报,2023, 35(11): 1-9.
|
| [20] |
颜湘武,张世峥,贾焦心. 光伏机组虚拟惯量控制下电力系统频率特性分析[J]. 可再生能源,2023, 41(1): 81-89.
|
| [21] |
朱慧敏,苑舜,李春来. 含储能环节的光伏电站虚拟同步发电机控制策略与分析[J]. 电测与仪表,2023, 60(5): 45-50.
|
| [22] |
罗澍忻,朱廷猛,余浩,等. 考虑频率稳定约束的电网新能源承载能力评估方法及其应用[J]. 南方电网技术,2023, 17(10): 65-76.
|
| [23] |
郑云平,亚夏尔·吐尔洪. 基于VSG技术的风-光-储系统自适应调频控制策略研究[J]. 高压电器,2023, 59(7): 12-19.
|
/
| 〈 |
|
〉 |