PDF(1399 KB)
Collaborative Optimization Model of Wind-Photovoltaic-Storage-EV-PSP Based on Game Trading
ZHOU Xiangfeng,WU Jiekang,ZHOU Xuzhan,CAI Chunyuan,LI YongJian
Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 30-37.
PDF(1399 KB)
PDF(1399 KB)
Collaborative Optimization Model of Wind-Photovoltaic-Storage-EV-PSP Based on Game Trading
Aiming at the problem of multi-energy collaborative optimization under the power internet of things, an optimization model of collaborative trading of wind and solar storage was established. The excellent regulation performance of pumped storage power (PSP) plant is used to bundle it with wind power plant and photovoltaic power plant in proportion to maximize the absorption of new energy; The other part participates in the main side market regulation to achieve collaborative optimization. Through the construction of landscape storage alliance, it aims to eliminate the deviation of landscape new energy output, so as to solve the security problem of information exchange in the internet of things. In addition, the Shapley value method is used to allocate the surplus value. In this process, considering the carbon emission requirements, the carbon reduction efficiency of electric vehicles(EV) is introduced on the load side, and it is constrained by the output of thermal power. At the same time, the electric energy storage regulation is added to the grid side to ensure the safe operation of the system in the power internet of things environment. This study adopts the volume quotation method on the subject side, so that all the new energy forecasts are cleared, while the load side is cleared following the market price fluctuations. Further considering the fluctuation deviation, the output of the multi-energy subject is optimized. Simulation results under different scenarios verify the feasibility and adaptability of the proposed optimization model.
new energy / energy storage / pumped storage power (PSP) / electric vehicle (EV) / carbon emissions / cooperative optimization
| [1] |
王睿佳 中国电力报. 发展面向新型能源体系的电力物联网[N]. 中国电力报,2023-03-20(3).
|
| [2] |
傅质馨,李潇逸,袁越. 泛在电力物联网关键技术探讨[J]. 电力建设,2019, 40(5): 1-12.
|
| [3] |
李钦豪,张勇军,陈佳琦,等. 泛在电力物联网发展形态与挑战[J]. 电力系统自动化,2020, 44(1): 13-22.
|
| [4] |
张亚健,杨挺,孟广雨. 泛在电力物联网在智能配电系统应用综述及展望[J]. 电力建设,2019, 40(6): 1-12.
|
| [5] |
张刘冬,殷明慧,卜京,等. 基于成本效益分析的风电?抽水蓄能联合运行优化调度模型[J]. 电网技术,2015, 39(12): 3386-3392.
|
| [6] |
梁子鹏,陈皓勇,雷佳,等. 考虑风电不确定度的风-火-水-气-核-抽水蓄能多源协同旋转备用优化[J]. 电网技术,2018, 42(7): 2111-2119, 2121-2123.
|
| [7] |
王丹,黄德裕,胡庆娥,等. 基于电-热联合市场出清的综合需求响应建模及策略[J]. 电力系统自动化,2020, 44(12): 13-21.
|
| [8] |
陆舆. 含电动汽车的电力系统低碳调度[D]. 南京:东南大学,2019.
|
| [9] |
马静,沈玉明,荣秀婷,等. 考虑储能用户与新能源双边交易调峰服务的电力系统联合运营模式[J]. 电力自动化设备,2023, 43(1): 113-120.
|
| [10] |
梅生伟,李瑞,黄少伟,等. 多能互补网络建模及动态演化机理初探[J]. 全球能源互联网,2018, 1(1): 10-22.
|
| [11] |
肖云鹏,王锡凡,王秀丽,等. 多能源市场耦合交易研究综述及展望[J]. 全球能源互联网,2020, 3(5): 487-496.
|
| [12] |
王怡. 基于多主体博弈的综合能源市场交易决策研究[D]. 北京:北京交通大学,2022.
|
| [13] |
彭春华,张海洋,孙惠娟,等. 碳交易机制下综合能源市场多供能主体均衡竞价策略[J]. 电网技术,2022, 46(2): 463-471.
|
| [14] |
王晛,黄蒙涛,张少华. 考虑风电投标偏差惩罚的电力市场均衡分析[J]. 电网技术,2016, 40(2): 602-607.
|
| [15] |
高伟,谢丽蓉,卢浩鹏,等. 考虑预测误差分析的混合储能补偿优化策略[J]. 太阳能学报,2023, 44(2): 254-259.
|
| [16] |
邵浩然,董超,舒征宇,等. 含光伏机组参与竞标的日前市场价值公平分配机制的研究[J]. 可再生能源,2023, 41(5): 667-675.
|
| [17] |
赵栩,刘继春,张帅. 市场环境下光伏抽蓄联合电站的优化运行与收益分配策略[J]. 水电能源科学,2021, 39(8): 208-212.
|
| [18] |
李宏仲,魏静怡,吕勇荡. 考虑储能与新能源双边交易的日前市场报价策略[J]. 电网技术,2022, 46(12): 4843-4853.
|
| [19] |
刘萌. 基于博弈论的电网侧储能参与现货联合市场竞价策略研究[D]. 郑州:郑州大学,2021.
|
| [20] |
潘郑楠,梁宁,徐慧慧,等. 基于纳什谈判理论的风电-虚拟氢厂参与现货市场合作运行策略[J]. 电力自动化设备,2023, 43(5): 129-137.
|
| [21] |
邓盛盛,陈皓勇,肖东亮,等. 考虑碳市场交易的寡头电力市场均衡分析[J]. 南方电网技术,2024, 18(1): 143-152.
|
| [22] |
田海青,郭金辉,周瑜,等. 基于合作博弈模型的新能源参与电力交易的调控策略[J]. 现代电力,2022, 39(6): 640-648.
|
| [23] |
何永秀,宋栋,夏天,等. 基于合作博弈论的常规能源与新能源发电权置换交易模式研究[J]. 电网技术,2017, 41(8): 2485-2490.
|
/
| 〈 |
|
〉 |