Safety Control Strategy of Compressed Air Energy Storage Based on Variable Flow Control

LI Chao, CHEN Laijun, LI Jianhua, MEI Shengwei, ZHAO Fangliang, CUI Sen, SHI Yunqian, GUO Junbo

Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 38-46.

PDF(2889 KB)
PDF(2889 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 38-46. DOI: 10.16513/j.2096-2185.DE.2409605
Basic Research

Safety Control Strategy of Compressed Air Energy Storage Based on Variable Flow Control

Author information +
History +

Abstract

Advanced adiabatic compressed air energy storage (AA-CAES) can improve the rate of new energy consumption, and it is a key technology for new power systems. Since the compressor of the AA-CAES system adopts a centrifugal compressor, there is a phenomenon of surge and blockage during the operation, which seriously affects the safe operation of the system. In this paper, the safety control strategy of the compression side of the AA-CAES system is investigated. Firstly, a simple judgement method of the surge and blockage phenomena based on the slope of the compressor mass flow rate is proposed, and the range of the compressor's allowable mass flow rate of air flowing through the compressor at a given rotational speed is determined. Then, the anti-surge and blockage control strategy of the compression subsystem is designed to limit the range of compressor air mass flow rate by controlling the angle of the inlet guide vane of the compressor using the variable flow method. Finally, simulations are carried out under the start-stop condition and grid-connected operation condition to verify the effectiveness of the control strategy.

Key words

advanced adiabatic compressed air energy storage (AA-CAES) / variable flow control / surge / blockage

Cite this article

Download Citations
Chao LI , Laijun CHEN , Jianhua LI , et al . Safety Control Strategy of Compressed Air Energy Storage Based on Variable Flow Control[J]. Distributed Energy Resources. 2024, 9(6): 38-46 https://doi.org/10.16513/j.2096-2185.DE.2409605

References

[1]
肖先勇,郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术2022, 54(1): 47-59.
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59.
[2]
舒印彪,张智刚,郭剑波,等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报2017, 37(1): 1-9.
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9.
[3]
杨经纬,张宁,王毅,等. 面向可再生能源消纳的多能源系统:述评与展望[J]. 电力系统自动化2018, 42(4): 11-24.
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24.
[4]
赵冬梅,夏轩,陶然. 含电转气的热电联产微网电/热综合储能优化配置[J]. 电力系统自动化2019, 43(17): 46-54.
ZHAO Dongmei, XIA Xuan, TAO Ran. Optimal configuration of electric/thermal integrated energy storage for combined heat and power microgrid with power to gas[J]. Automation of Electric Power Systems, 2019, 43(17): 46-54.
[5]
梅生伟,李建林,朱建全,等. 储能技术[M]. 北京:机械工业出版社,2022: 72-73.
[6]
花严红,袁卫星,王海. 离心压缩机研究现状及展望[J]. 风机技术2007, 49(3): 59-62, 65.
HUA Yanhong, YUAN Weixing, WANG Hai. Current situation and expectation on research of centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2007, 49(3): 59-62, 65.
[7]
魏龙,袁强. 离心式压缩机的喘振及控制[J]. 风机技术2004, 46(1): 43-47.
WEI Long, YUAN Qiang. Surge & control of centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2004, 46(1): 43-47.
[8]
CHU F, WANG F, WANG X, et al. Performance modeling of centrifugal compressor using kernel partial least squares[J]. Applied Thermal Engineering, 2012, 44: 90-99.
[9]
CALERO I, CAÑIZARES C A, BHATTACHARYA K. Impact of mechanical system modeling on compressed air energy storage models for frequency regulation[C]//2019 IEEE Power & Energy Society General Meeting (PESGM). Atlanta, GA, USA: IEEE, 2019: 1-5.
[10]
LIN Z, ZUO Z, LIANG Q, et al. Applications of additively manufactured adjustable vaned diffusers in centrifugal compressor[J]. Journal of Thermal Science, 2022, 31(2): 273-284.
[11]
GUO W, ZUO Z, SUN J, et al. Experimental investigation on off-design performance and adjustment strategies of the centrifugal compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2021, 38: 102515.
[12]
GUO H, XU Y, GUO C, et al. Off-design performance of CAES systems with low-temperature thermal storage under optimized operation strategy[J]. Journal of Energy Storage, 2019, 24: 100787.
[13]
SALVINI C, MARIOTTI P, GIOVANNELLI A. Compression and air storage systems for small size CAES plants: Design and off-design analysis[J]. Energy Procedia, 2017, 107: 369-376.
[14]
蒲斌,李星星,杨福超,等. 变频器低电压穿越引起的压缩机喘振及改进措施[J]. 油气储运2024, 43(4): 439-448.
PU Bin, LI Xingxing, YANG Fuchao, et al. Analysis of compressor surge induced by converter low-voltage ride through and improvement measures[J]. Oil & Gas Storage and Transportation, 2024, 43(4): 439-448.
[15]
蒋安荔,甘捷,朱治鹏,等. 离心式压缩机防喘振控制系统的研究与稳定性分析[J]. 压缩机技术2023(3): 32-35.
JIANG Anli, GAN Jie, ZHU Zhipeng, et al. Research of anti-surge control system for centrifugal compressor and its stability analysis[J]. Compressor Technology, 2023(3): 32-35.
[16]
吴庆龙,杨赫,赵栢杨,等. 离心式压缩机防喘振自动控制技术研究[J]. 石油和化工设备2023, 26(9): 19-21.
WU Qinglong, YANG He, ZHAO Baiyang, et al. Research on anti-surge control technology of centrifugal compressor[J]. Petro & Chemical Equipment, 2023, 26(9): 19-21.
[17]
刘佰达. 高速磁悬浮离心式压缩机及其控制方法[J]. 压缩机技术2023(4): 48-53.
LIU Baida. High speed maglev centrifugal compressor and its control method[J]. Compressor Technology, 2023(4): 48-53.
[18]
付嘉宁,周家怡. 一种石油化工离心压缩机防喘振控制技术[J]. 中国科技信息2023(20): 107-109.
FU Jianing, ZHOU Jiayi. Anti-surge control technology for petrochemical centrifugal compressor[J]. China Science and Technology Information, 2023(20): 107-109.
[19]
魏龙,常新忠,滕文锐. 离心压缩机喘振分析及实例[J]. 通用机械2003(7): 38-41.
WEI Long, CHANG Xinzhong, TENG Wenrui. Surge analysis of centrifugal compressor & cases[J]. General Machinery, 2003(7): 38-41.
[20]
杨泽军,朱海山,雷亚飞,等. 离心压缩机启机动态仿真与流程优化[J]. 中国海上油气2018, 30(2): 167-172.
YANG Zejun, ZHU Haishan, LEI Yafei, et al. Dynamic simulation and process optimization of the start-up of centrifugal compressor[J]. China Offshore Oil and Gas, 2018, 30(2): 167-172.
[21]
CALERO I, CAÑIZARES C A, BHATTACHARYA K. Compressed air energy storage system modeling for power system studies[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3359-3371.

Funding

Research Project of China Three Gorges New Energy (Group) Co., Ltd.(15044105)
PDF(2889 KB)

Accesses

Citation

Detail

Sections
Recommended

/