Bilevel Optimal Allocation of Micro-Energy Grid Cluster Sharing Energy Storage Considering Grid Carrying Capacity

JIANG Lu,WAN Zhongyang,SHAN Tihua,LI Xiaorong,YANG Jingang

Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 56-64.

PDF(1920 KB)
PDF(1920 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 56-64. DOI: 10.16513/j.2096-2185.DE.2409607
Basic Research

Bilevel Optimal Allocation of Micro-Energy Grid Cluster Sharing Energy Storage Considering Grid Carrying Capacity

Author information +
History +

Abstract

Shared energy storage is an effective measure to improve the efficiency of energy storage and play the synergistic advantages of micro-energy grid clusters, however, most of the existing studies have simplified the energy transmission channel between shared energy storage and micro-energy network clusters into a bus structure, which has problems such as 'fixed capacity’ but not 'siting’, insufficient utilisation of shared energy storage after configuration, and so on. There are problems such as only 'capacity-setting’ but not 'siting’ and insufficient utilisation of shared energy storage after configuration. In this context, a two-layer optimal configuration model of shared energy storage for micro-energy grid clusters is established, taking into account the carrying capacity of the power grid. Firstly, a two-layer configuration model of shared energy storage for micro-energy grid clusters is established: the upper model takes the minimisation of the operating cost of the power grid and the shared energy storage planning as the goal, and optimises the decision-making of the location and capacity of the shared energy storage by taking into account the carrying capacity of the power grid; the lower model takes the minimisation of the operating cost of the micro-energy grid as the goal, and optimises the solution to the micro-energy grid operation problem. Secondly, the lower-layer model is converted into the constraints of the upper-layer model based on the KKT condition, and the two-layer optimal allocation model is converted into a single-layer optimisation problem. Finally, a comparative analysis is conducted using a test case containing three micro-energy grids. The results show that the proposed model can fully consider the carrying capacity of the grid and obtain a shared energy storage siting and capacity-setting scheme with better economic benefits and shorter payback period.

Key words

micro energy grids / shared energy storage / grid carrying capacity / bi-layer optimal allocation / cluster

Cite this article

Download Citations
Lu JIANG , Zhongyang WAN , Tihua SHAN , et al . Bilevel Optimal Allocation of Micro-Energy Grid Cluster Sharing Energy Storage Considering Grid Carrying Capacity[J]. Distributed Energy Resources. 2024, 9(6): 56-64 https://doi.org/10.16513/j.2096-2185.DE.2409607

References

[1]
陈海生,李泓,徐玉杰,等. 2023年中国储能技术研究进展[J]. 储能科学与技术2024, 13(5): 1359-1397.
CHEN Haisheng, LI Hong, XU Yujie, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397.
[2]
任洪波,张宇晨,吴琼,等. 面向韧性提升的综合能源系统规划与运行调度研究综述[J/OL]. 电力系统自动化,1-16[2024-07-14].
REN Hongbo, ZHANG Yuchen, WU Qiong, et al. Research review on planning and operation dispatch of integrated energy system for resilience enhancement[J/OL]. Automation of Electric Power Systems, 1-16[2024-07-14].
[3]
吴奎华,李文升,吴肇赟,等. 基于交替方向乘子的多能互补微电网分布式最优潮流调度[J]. 电网与清洁能源2022, 38(11): 35-44.
WU Kuihua, LI Wensheng, WU Zhaoyun, et al. Distributed optimal power flow dispatch of multi-energy complementary microgrid based on alternating direction multiplier[J]. Power System and Clean Energy, 2022, 38(11): 35-44.
[4]
李承周,王宁玲,窦潇潇,等. 多能源互补分布式能源系统集成研究综述及展望[J]. 中国电机工程学报2023, 43(18): 7127-7150.
LI Chengzhou, WANG Ningling, DOU Xiaoxiao, et al. Review and prospect on the system integration of distributed energy system with the complementation of multiple energy sources[J]. Proceedings of the CSEE, 2023, 43(18): 7127-7150.
[5]
李蕊睿,李奇,蒲雨辰,等. 计及功率交互约束的含电—氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制2022, 50(14): 53-64.
LI Ruirui, LI Qi, PU Yuchen, et al. Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power System Protection and Control, 2022, 50(14): 53-64.
[6]
杨晓辉,袁志鑫,肖锦扬,等. 考虑电池寿命的混合储能微电网优化配置[J]. 电力系统保护与控制2023, 51(4): 22-31.
YANG Xiaohui, YUAN Zhixin, XIAO Jinyang, et al. Optimal configuration of hybrid energy storage microgrid considering battery life[J]. Power System Protection and Control, 2023, 51(4): 22-31.
[7]
王涛,钟浩,李世春,等. 基于主从博弈的多微电网储能容量优化配置[J]. 智慧电力2023, 51(1): 9-15, 68.
WANG Tao, ZHONG Hao, LI Shichun, et al. Optimal allocation of energy storage capacity in multi-microgrid based on master-slave game[J]. Smart Power, 2023, 51(1): 9-15, 68.
[8]
乔露,王鲁杨,李唯嘉,等. 基于虚拟直流电机的分布式储能系统能量动态分配策略[J]. 现代电力2024, 41(3): 547-556.
QIAO Lu, WANG Luyang, LI Weijia, et al. Energy dynamic allocation strategy of distributed energy storage system based on virtual DC machine[J]. Modern Electric Power, 2024, 41(3): 547-556.
[9]
闫东翔,陈玥. 共享储能商业模式和定价机制研究综述[J]. 电力系统自动化2022, 46(23): 178-191.
YAN Dongxiang, CHEN Yue. Review on business model and pricing mechanism for shared energy storage[J]. Automation of Electric Power Systems, 2022, 46(23): 178-191.
[10]
张浩鹏,李泽宁,薛屹洵,等. 基于共享储能服务的智能楼宇双层优化配置[J/OL]. 中国电机工程学报,1-12[2024-06-05].
ZHANG Haopeng, LI Zening, XUE Yixun, et al. Bi-level optimal configuration of intelligent buildings based on shared energy storage services[J/OL]. Proceedings of the CSEE, 1-12[2024-06-05].
[11]
高伟凯,何川,刘天琪,等. 考虑微电网联盟协调运行的用户侧共享储能多计费方式博弈定价方法[J]. 电力自动化设备2024, 44(9): 16-23.
GAO Weikai, HE Chuan, LIU Tianqi, et al. Multi-package game pricing method of user-side shared energy storage considering coordinated operation of microgrid alliance[J]. Electric Power Automation Equipment, 2024, 44(9): 16-23.
[12]
王娟,曾国辉,黄勃,等. 考虑退役电池梯次利用的多微网共享储能优化配置[J/OL]. 电源学报,1-12[2024-06-04].
WANG Juan, ZENG Guohui, HUANG Bo, et al. The optimization configuration of multi-micro grid shared energy storage considering the echelon utilization of retired batteries[J/OL]. Journal of Power Supply, 1-12[2024-06-04].
[13]
谢雨龙,罗逸飏,李智威,等. 考虑微网新能源经济消纳的共享储能优化配置[J]. 高电压技术2022, 48(11): 4403-4413.
XIE Yulong, LUO Yiyang, LI Zhiwei, et al. Optimal allocation of shared energy storage considering the economic consumption of microgrid new energy[J]. High Voltage Engineering, 2022, 48(11): 4403-4413.
[14]
杨昆,刘通,柏林,等. 基于谈判博弈的微电网群多主体共享储能容量优化配置策略[J]. 电测与仪表2024, 61(3): 33-41.
YANG Kun, LIU Tong, BAI Lin, et al. Optimal configuration strategy of shared energy storage capacity for micro-grid cluster based on multi-party bargaining game[J]. Electrical Measurement & Instrumentation, 2024, 61(3): 33-41.
[15]
茆美琴,丁勇,王杨洋,等. 微网:未来能源互联网系统中的“有机细胞”[J]. 电力系统自动化2017, 41(19): 1-11, 45.
MAO Meiqin, DING Yong, WANG Yangyang, et al. Microgrid—An “organic cell” for future energy interconnection system[J]. Automation of Electric Power Systems, 2017, 41(19): 1-11, 45.
[16]
石浩杰,熊厚博,张笑演,等. 考虑多微网接入的气电-交通耦合系统分布式规划方法[J]. 电力系统自动化2024, 48(17): 66-76.
SHI Haojie, XIONG Houbo, ZHANG Xiaoyan, et al. Distributed planning method for gas-electricity and transportation coupling system considering multi-microgrid integration[J]. Automation of Electric Power Systems, 2024, 48(17): 66-76.
[17]
司方远,张宁,韩英华,等. 面向多元灵活资源聚合的区域综合能源系统主动调节能力评估与优化:关键问题与研究架构[J]. 中国电机工程学报2024, 44(6): 2097-2119.
SI Fangyuan, ZHANG Ning, HAN Yinghua, et al. Fundamental problems and research framework for assessment and optimization of the functional regulation capacity of the regional integrated energy system under the aggregation of diversified and flexible resources[J]. Proceedings of the CSEE, 2024, 44(6): 2097-2119.
[18]
李捷,余涛,潘振宁. 基于强化学习的增量配电网实时随机调度方法[J]. 电网技术2020, 44(9): 3321-3332.
LI Jie, YU Tao, PAN Zhenning. Real-time stochastic dispatch method for incremental distribution network based on reinforcement learning[J]. Power System Technology, 2020, 44(9): 3321-3332.
[19]
BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1401-1407.
[20]
ZHANG H, WU Q, CHEN J, et al. Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming[J]. Energy, 2023, 270: 126892.
[21]
罗雪梅,马昕峥,张淑,等. 计及电能质量全指标的承载力评估方法[J]. 科技创新与应用2024, 14(27): 158-162.
[22]
SINHA A, SOUN T, DEB K. Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 496-510.
[23]
LI L, MU H, LI N, et al. Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies[J]. Energy and Buildings, 2015, 99: 231-242.

Funding

Science and Technology Project of State Grid Jibei Electric Power Co., Ltd.(B3018F240006)
PDF(1920 KB)

Accesses

Citation

Detail

Sections
Recommended

/