Trustworthy Federated Learning Approach for V2G Scheduling

HE Yunhua,CHENG Yuhang,YUAN Xiaodong,GUO Yajuan,LI Jianlin

Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 65-74.

PDF(1971 KB)
PDF(1971 KB)
Distributed Energy ›› 2024, Vol. 9 ›› Issue (6) : 65-74. DOI: 10.16513/j.2096-2185.DE.2409608
Basic Research

Trustworthy Federated Learning Approach for V2G Scheduling

Author information +
History +

Abstract

Vehicle-to-grid (V2G) technology utilizes scheduling models to generate decision schedules that enable electric vehicles (EVs) to participate in grid management in an orderly manner, which can achieve efficient peak shaving and valley filling. The federated learning approach can be used to train the scheduling model under the condition that the charging stations are unwilling to share the raw data. Therefore, selecting training labels that align with the interests of multiple parties and ensuring the correctness of model parameter aggregation are crucial for V2G scheduling decisions. In this paper, a trusted federated learning method for V2G scheduling is proposed. First, a trusted federated learning architecture for real-time V2G scheduling is constructed, which includes three components: a label generation module, a verifiable federated learning module, and a real-time scheduling module. Next, a real-time scheduling label data generation model is proposed, considering the interests of EV users, operators, and grid-side load fluctuations, and a dynamic updating method for scheduling model labels is designed. Furthermore, a secure record and verification method for model parameter aggregation is proposed to ensure the correctness of federated learning model parameter aggregation. Finally, the time overhead, storage overhead, and Gas cost of the label data generated by EVs in three types of charging time periods and the proposed verification method are analyzed. Numerical results indicate that the proposed label model exhibits optimal values for EV users, operators, and grid-side load fluctuations, with the time overhead for constructing the aggregation tree reaching the millisecond level. Compared to traditional verification methods, the Gas cost of aggregating and verifying using the smart contract is significantly reduced. Thus, the proposed trusted federated learning method aligns with the interests of multiple stakeholders in the power grid and demonstrates superior performance.

Key words

vehicle to grid (V2G) / electric vehicle (EV) / smart contracts / homomorphic encryption / federated learning / model parameter aggregation

Cite this article

Download Citations
Yunhua HE , Yuhang CHENG , Xiaodong YUAN , et al . Trustworthy Federated Learning Approach for V2G Scheduling[J]. Distributed Energy Resources. 2024, 9(6): 65-74 https://doi.org/10.16513/j.2096-2185.DE.2409608

References

[1]
谭泽富,周正洋,高树坤,等. V2G应用进展综述[J]. 重庆理工大学学报(自然科学), 2023, 37(3): 222-229.
TAN Zefu, ZHOU Zhengyang, GAO Shukun, el al. Literature review of vehicle-to-grid application progress[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(3): 222-229.
[2]
刘栋晨,季昱,胡岳. 交能融合V2G技术研究与实践综述[J/OL]. 上海交通大学学报,1-25[2024-02-20].
LIU Dongchen, JI Yu, HU Yue. Summary of the research and practice on V2G technology of transportation and energy fusion[J/OL]. Journal of Shanghai Jiaotong University, 1-25[2024-02-20].
[3]
蔡黎,葛棚丹,代妮娜,等. 电动汽车入网负荷预测及其与电网互动研究进展综述[J]. 智慧电力2022, 50(7): 96-103.
CAI Li, GE Pengdan, DAI Nina, et al. Review of research progress on load prediction and grid interaction of electric vehicles[J]. Smart Power, 2022, 50(7): 96-103.
[4]
毛玲,张钟浩,赵晋斌,等. 车-桩-网交融技术研究现状及展望[J]. 电工技术学报2022, 37(24): 6357-6371.
MAO Ling, ZHANG Zhonghao, ZHAO Jinbin, et al. Research status and prospects of fusion technology of vehicle-charging pile-power grid[J]. Transactions of China Elec-trotechnical Society, 2022, 37(24): 6357-6371.
[5]
王敏,吕林,向月. 计及V2G价格激励的电动汽车削峰协同调度策略[J]. 电力自动化设备2022, 42(4): 27-33, 85.
WANG Min, Lin, XIANG Yue. Coordinated scheduling strategy of electric vehicles for peak shaving considering V2G price incentive[J]. Electric Power Automation Equipment, 2022, 42(04): 27-33, 85.
[6]
贾俊,范炜豪,吕志鹏,等. 用于电动汽车集群并网的直流变压器启动研究[J]. 发电技术2023, 44(6): 875-882.
JIA Jun, FAN Weihao, Zhipeng, et al. Research on startup of DC transformer for electric vehicle cluster grid-connection[J]. Power Generation Technology, 2023, 44(6): 875-882.
[7]
王伟杰,黄海宇,徐远途,等. 电动汽车参与主动配电网电压调控的策略研究[J]. 广东电力2023, 36(10): 93-104.
WANG Weijie, HUANG Haiyu, XU Yuantu, et al. Strategy research on electric vehicles participating in active distribution network voltage regulation[J]. Guangdong Electric Power, 2023, 36(10): 93-104.
[8]
MCMANAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282.
[9]
黄珍瑶,程诺,江岳文. 考虑EV调峰需求响应可靠性的V2G聚合商多时间尺度调度策略[J/OL]. 高电压技术,1-11[2024-05-07].
HUANG Zhenyao, CHENG Nuo, JIANG Yuewen. Multi-time-scale scheduling strategy of V2G aggregators considering EV peak regulating demand response reliability[J/OL]. High Voltage Engineering, 1-11[2024-05-07].
[10]
马永翔,王希鑫,闫群民,等. 电动汽车双层优化模型的充放电调度策略[J]. 重庆理工大学学报(自然科学), 2024, 38(2): 267-276.
MA Yongxiang, WANG Xixin, YAN Qunmin, et al. Charge and discharge scheduling strategies for electric vehicle double-layer optimization models[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(2): 267-276.
[11]
董运昌,刘世民,曲朝阳,等. 计及用户响应电价关联与多主体共赢的电动汽车充放电定价优化[J]. 电力自动化设备2022, 42(7): 134-142.
DONG Yunchang, LIU Shimin, QU Zhaoyang, et al. Charging and discharging pricing optimization of electric vehicles considering correlation of user response to electricity price and win-win results of multi-stakeholder[J]. Electric Power Automation Equipment, 2022, 42(7): 134-142.
[12]
QIN Dalin, WANG Chenxi, WEN Qingsong, et al. Personalized federated DARTS for electricity load forecasting of individual buildings[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4888-4901.
[13]
LI Yang, WANG Ruinong, LI Yuanzheng, et al. Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach[J]. Applied Energy, 2023, 329: 1-10.
[14]
SHANG Yitong, LI Zekai, SHAO Ziyun, et al. Secure and efficient V2G scheme through edge computing and federated learning[C]//2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). Beijing: IEEE, 2022: 2250-2255.
[15]
李顺东,徐雯婷,王文丽,等. 恶意模型下的最大(小)值保密计算[J]. 计算机学报2021, 44(10): 2076-2089.
[16]
陈学斌,任志强,张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 计算机应用2024, 44(6): 1663-1672.
CHEN Xuebin, REN Zhiqiang, ZHANG Hongyang. Review on security threats and defense measures in federated learning[J]. Journal of Computer Applications, 2024, 44(6): 1663-1672.
[17]
TANG Lingfeng, XIE Haipeng, WANG Xiaoyang, et al. Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach[J]. Applied Energy, 2023, 337: 120860.
[18]
ZHOU Chuanxin, SUN Yi, WANG Degang. Federated learning with Gaussian differential privacy[C]//2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence. New York: ACM, 2020: 296-301.
[19]
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1175-1191.
[20]
郑志勇,张艺,朱豆豆,等. 同态加密技术在联邦学习中的应用[J]. 河南科学2023, 41(7): 937-945.
ZHENG Zhiyong, ZHANG Yi, ZHU Doudou, et al. Application of homomorphic encryption in federated learning[J]. Henan Science, 2023, 41(7): 937-945.
[21]
赖成喆,赵益宁,郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全2024, 24(1): 93-105.
LAI Chengzhe, ZHAO Yining, ZHENG Dong. A privacy preserving and verifiable federated learning scheme based on homomorphic encryption[J]. Netinfo Security, 2024, 24(1): 93-105.
[22]
陈嘉翊,孙晨雨,周欣桐,等. 基于联邦学习和同态加密的电力数据预测模型本地保护[J] . 信息安全研究2023, 9(3): 228-234.
CHEN Jiayi, SUN Chenyu, ZHOU Xintong, et al. Local protection of power data prediction model based on federated learning and homomorphic encryption[J]. Journal of Information Security Research, 2023, 9(3): 228-234.
[23]
XU Yihang, MAO Yuxing, LI Simou, et al. Privacy-preserving federal learning chain for internet of things[J]. IEEE Internet of Things Journal, 2023, 10(20): 18364-18374.
[24]
余晟兴,陈钟. 基于同态加密的高效安全联邦学习聚合框架[J]. 通信学报2023, 44(1): 14-28.
YU Shengxing, CHEN Zhong. Efficient secure federated learning aggregation framework based on homomorphic encryption[J]. Journal on Communications, 2023, 44(1): 14-28.
[25]
王腾,霍峥,黄亚鑫,等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用2023, 43(2): 437-449.
WANG Teng, HUO Zheng, HUANG Yaxin, et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2): 437-449.
[26]
汪永菊,杜秀娟,陈浩章. 区块链智能合约技术研究综述[J]. 计算机仿真2023, 40(8): 1-4, 65.
WANG Yongju, DU Xiujuan, CHEN Haozhang. Overview of blockchain smart contract technology research[J]. Computer Simulation, 2023, 40(8): 1-4, 65.
[27]
魏韡,陈玥,刘锋,等. 基于主从博弈的智能小区代理商定价策略及电动汽车充电管理[J] . 电网技术2015, 39(4): 939-945.
WEI Wei, CHEN Yue, LIU Feng, et al. Stackelberg game based retailer pricing scheme and EV charging management in smart residential area[J]. Power System Technology, 2015, 39(4): 939-945.
[28]
ZHANG Xianglong, FU Anmin, WANG Huaqun, et al. A privacy-preserving and verifiable federated learning scheme[C]//2020—2020 IEEE International Conference on Commu-nications (ICC). Ireland: IEEE, 2020: 1-6.

Funding

Science and Technology Program of State Grid Headquarters(5400-202318585A-3-2-ZN)
PDF(1971 KB)

Accesses

Citation

Detail

Sections
Recommended

/