Stochastic Optimization Scheduling Method for Islanded Microgrids

YIN Jie, PANG Aiping

Distributed Energy ›› 0

PDF(13649 KB)
PDF(13649 KB)
Distributed Energy ›› 0 DOI: 10.16513/j.2096-2185.DE.25100064

Stochastic Optimization Scheduling Method for Islanded Microgrids

  • YIN Jie, PANG Aiping
Author information +
History +

Abstract

The increasing penetration of renewable energy and growing electricity demand in islanded microgrids have intensified the uncertainties on both the generation and load sides,posing severe challenges to their secure,stable,and economic  operation.  Traditional  robust  optimization  methods,which  over-emphasize  extreme  system  conditions,often compromise operational economy. This paper employs fuzzy theory to generate stochastic optimization scenarios for the system. Based on the probability of scenario occurrence and the minimum hybrid energy storage system capacity required for each scenario,a scenario reduction process is conducted. A stochastic optimization-based dispatch method for islanded microgrids is proposed. The method involves establishing uncertainty models for renewable energy and load to generate stochastic scenarios,formulating a mathematical model,performing demand response dispatch under each scenario,and finally filtering out extreme scenarios. Finally,based on the proposed method,experimental verification is carried out in an island microgrid case. The proposed method reduces the system operating cost by 20.17% compared to the traditional robust optimization approach. The results verify the effectiveness and superiority of the proposed method.

Key words

hybrid  / energy  / storage  / system / islanded  / microgrid / stochastic  / optimization / demand  / response / scheduling strategy

Cite this article

Download Citations
YIN Jie, PANG Aiping. Stochastic Optimization Scheduling Method for Islanded Microgrids[J]. Distributed Energy Resources. 0 https://doi.org/10.16513/j.2096-2185.DE.25100064

Funding

This work is supported by Guizhou Provincial Basic Research Program (Natural Science)(Qiankehe Foundation MS [2025] 685)
PDF(13649 KB)

Accesses

Citation

Detail

Sections
Recommended

/