Steady-State Modeling Study on Hydrogen Production by Alkaline Water Electrolysis

DONG Chao, FENG Kangkang, LOU Qinghui, HU Huajun, LIAO Guie, SHI Xiangjian

Distributed Energy ›› 2025, Vol. 10 ›› Issue (5) : 21-29.

PDF(2031 KB)
PDF(2031 KB)
Distributed Energy ›› 2025, Vol. 10 ›› Issue (5) : 21-29. DOI: 10.16513/j.2096-2185.DE.25100076

Steady-State Modeling Study on Hydrogen Production by Alkaline Water Electrolysis

Author information +
History +

Abstract

As an efficient hydrogen production technology, alkaline electrolyzer holds significant application prospects in green hydrogen production. For alkaline water electrolysis hydrogen production systems, this paper proposes an accurate and applicable semi-theoretical and semi-empirical alkaline electrolyzer model based on electrochemical principles and thermodynamic analysis. This model treats the electrolyzer’s cell voltage and gas purity as functions of operating pressure, temperature, and current density, and incorporates the influence of Faraday efficiency on hydrogen production rate. Based on literature-reported experimental data of a 50 m3/h alkaline electrolyzer under different operating conditions, this paper determines the model parameters via fitting using a nonlinear regression method. This paper further employs these experimental data to verify the model’s accuracy and analyze its applicability under varying operating conditions. The simulation results show that the proposed model can effectively predict the electrolyzer’s performance parameters, thereby providing a theoretical basis for the optimal design and the control systems of electrolyzers.

Key words

alkaline electrolyzer / steady-state modeling / electrochemical reactions / thermodynamic analysis / green hydrogen production

Cite this article

Download Citations
DONG Chao , FENG Kangkang , LOU Qinghui , et al . Steady-State Modeling Study on Hydrogen Production by Alkaline Water Electrolysis[J]. Distributed Energy Resources. 2025, 10(5): 21-29 https://doi.org/10.16513/j.2096-2185.DE.25100076

References

[1]
夏佳伟, 张一帆, 雷浩, 等. 考虑高效氢能利用和碳捕集的综合能源系统低碳优化调度[J]. 电力建设, 2024, 45(12):100-111.
XIA Jiawei, ZHANG Yifan, LEI Hao, et al. Low-carbon economic dispatch of integrated energy system considering efficient hydrogen utilization and carbon capture equipment[J]. Electric Power Construction, 2024, 45(12): 100-111.
[2]
LI X, MULDER M. Value of power-to-gas as a flexibility option in integrated electricity and hydrogen markets[J]. Applied Energy, 2021, 304: 117863.
[3]
周步祥, 蔡宇豪, 邱一苇, 等. 考虑电、氢、氨市场的可再生能源电制氢合成氨系统多主体合作运行策略[J]. 电力建设, 2024, 45(11):50-64.
ZHOU Buxiang, CAI Yuhao, QIU Yiwei, et al. Multi-stakeholder cooperative operation strategy of renewable power to ammonia systems considering the electricity, hydrogen and ammonia markets[J]. Electric Power Construction, 2024, 45(11): 50-64.
[4]
SEBBAHI S, NABIL N, ALAOUI-BELGHITI A, et al. Assessment of the three most developed water electrolysis technologies: Alkaline water electrolysis, proton exchange membrane and solid-oxide electrolysis[J]. Materials Today: Proceedings, 2022, 66: 140-145.
[5]
纪钦洪, 徐庆虎, 于航, 等. 质子交换膜水电解制氢技术现状与展望[J]. 现代化工, 2021, 41(4):72-76,81.
Abstract
介绍了氢气来源以及不同水电解制氢技术发展现状,聚焦质子交换膜水电解面临的膜材料、催化剂等技术瓶颈及发展态势,梳理分析了国内外质子交换膜水电解制氢技术应用新方向。
JI Qinhong, XU Qinghu, YU Hang, et al. Status and trend of hydrogen production technologies through water electrolysis by proton exchange membrane[J]. Modern Chemical Industry, 2021, 41(4): 72-76,81.
This paper introduces the sources of hydrogen,the development status of various hydrogen production technologies by electrolysis,focuses on the bottlenecks and development trends of membrane materials,catalysts and membrane electrode assemblies of proton exchange membrane (PEM) electrolysis,and analyzes the new application directions of PEM electrolysis worldwide.
[6]
孙正龙, 谭僖, 高建红, 等. 固体氧化物电解池制氢关键材料发展现状[J]. 现代化工, 2024, 44(12):83-88.
Abstract
对固体氧化物电解池及其工作原理进行了简介,综述了电解槽关键材料电解质和电极材料性能要求与现阶段研究现状、电解槽降解机理等,并展望了其未来发展趋势。
SUN Zhenglong, TAN Xi, GAO Jianhong, et al. Current development situation of key materials in solid oxide electrolysis cells for hydrogen production[J]. Modern Chemical Industry, 2024, 44(12):83-88.
An introduction about solid oxide electrolysis cells and their working principles is given,the requirements and current research status of key materials such as electrolytes and electrode materials are reviewed,and the degradation mechanism for electrolysis cells is expounded.The development trend in the future is predicted.
[7]
张腾飞. 碱性水电解制氢系统的建模分析与设计优化[D]. 北京: 北京化工大学, 2023.
ZHANG Tengfei. Modeling analysis and design optimization of alkaline water electrolysis system for hydrogen production[D]. Beijing: Beijing University of Chemical Technology, 2023.
[8]
OLIVIER P, BOURASSEAU C, BOUAMAMA P B. Low-temperature electrolysis system modelling: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 280-300.
[9]
李冠儒, 孙亮, 罗瑞, 等. 考虑能量梯级利用的风氢综合能源系统多目标优化配置[J]. 电力建设, 2024, 45(10): 1-12.
LI Guanru, SUN Liang, LUO Rui, et al. Multi-objective optimization of wind-hydrogen integrated energy systems with energy cascade utilization[J]. Electric Power Construction, 2024, 45(10): 1-12.
[10]
张春雁, 窦真兰, 王俊, 等. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3):305-317.
Abstract
氢能作为清洁无碳、灵活高效的二次能源和工业原料,具有广阔的发展前景。虽然单独的电解水制氢、储氢和供氢技术都已发展相对成熟,但我国电解水制氢-储氢-供氢的耦合发展正处于起步阶段,探索该耦合技术在电力系统中的发展对氢能与传统电力的协同利用具有重要意义。基于此,介绍了电解水制氢、储氢和供氢技术的基本原理、分类及其优缺点,总结了美国、日本和欧盟在电解水制氢-储氢-供氢产业的发展情况,分析我国从制氢到用氢的基本现状,讨论我国电解水制氢-储氢-供氢在电力系统中3种可能的应用模式。最后,基于现状提出推动我国电解水制氢-储氢-供氢在电力系统中发展的建议,为优化氢能的制-储-供-用全技术链发展提供参考。
ZHANG Chunyan, DOU Zhenlan, WANG Jun, et al. Development route of hydrogen production by water electrolysis,hydrogen storage and hydrogen supply in power system[J]. Power Generation Technology, 2023, 44(3):305-317.

Hydrogen energy has broad development prospects as a clean, carbon-free, flexible and efficient secondary energy and industrial raw material. Although the technologies of hydrogen production by water electrolysis, hydrogen storage and hydrogen supply have been relatively mature, the technology chain of hydrogen production-storage-supply is still in its infancy. It is of great importance to explore the technology chain in power system for the cooperative utilization of hydrogen energy and traditional electricity. This paper firstly introduced the basic principles, classifications, advantages and disadvantages of the technologies including hydrogen production by water electrolysis, hydrogen storage and hydrogen supply, and summarized the development of hydrogen production by water electrolysis, hydrogen storage and hydrogen supply technologies in the United States, Japan and the European Union. Then, the current status of above technologies in China was analyzed, and three possible application modes of hydrogen production by water electrolysis, hydrogen storage and hydrogen supply in power system in China were discussed. Finally, based on the current situation, the suggestions for promoting the development of hydrogen production by water electrolysis, hydrogen storage and hydrogen supply in power system in China were put forward, which provide a reference for optimizing the development of the whole technology chain of hydrogen energy production-storage-supply-use.

[11]
滕越, 赵骞, 袁铁江, 等. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3):318-330.
Abstract
氢能作为一种绿色、零碳的二次能源,是能源转型发展的重要载体之一,已成为能源互联的重要媒介。可再生能源电解水制氢是未来制氢的主要途径,将促进能源结构调整与转型。然而我国氢能技术研发和产业应用尚处于初始阶段,氢能制备、储运、转换和应用产业链的各环节存在大量问题有待解决。分析了绿电制氢技术、氢气储运技术、氢能应用技术的发展现状,研究了绿电-氢能-多域应用典型场景和网络耦合集成关键技术,可为氢能制、储、用技术的结合和多域应用网络发展提供参考思路。
TENG Yue, ZHAO Qian, YUAN Tiejiang, et al. Key technology status and outlook for green electricity-hydrogen energy-multi-domain applications coupled network[J]. Power Generation Techno-logy, 2023, 44(3):318-330.
[12]
BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
[13]
JOVIĆ V D, JOVIĆ B M, LAČNJEVAC U Č, et al. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions[J]. Journal of Electroanalytical Chemistry, 2018, 819: 16-25.
[14]
杨成玉, 潘永乐, 李广玉. 碱性电解槽动态制氢模式挑战及应对策略[J]. 当代化工研究, 2024(23):101-106.
YANG Chengyu, PAN Yongle, LI Guangyu. Challenges of dynamic hydrogen production mode in alkaline electrolyzers and response strategies[J]. Modern Chemical Research, 2024(23): 101-106.
[15]
梁涛, 刘子聪, 谭建鑫, 等. 兆瓦级碱性电解槽多变量数字孪生仿真系统构建[J]. 太阳能学报, 2024, 45(12):545-554.
LIANG Tao, LIU Zicong, TAN Jianxin, et al. Construction of multivariate digital twin simulation system for megawatt-scale alkaline electrolyzer[J]. Acta Energiae Solaris Sinica, 2024, 45(12): 545-554.
[16]
IRIBARREN Á, ELIZONDO D, BARRIOS E L, et al. Dynamic modeling of a pressurized alkaline water electrolyzer: A multiphysics approach[J]. IEEE Transactions on Industry Applications, 2023, 59(3): 3741-3753.
[17]
AMORES E, RODRÍGUEZ J, CARRERAS C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13063-13078.
[18]
DING S, GUO B, HU S, et al. Analysis of the effect of characteristic parameters and operating conditions on exergy efficiency of alkaline water electrolyzer[J]. Journal of Power Sources, 2022, 537:231532.
[19]
REN Z, WANG J, YU Z, et al. Experimental studies and modeling of a 250 kW alkaline water electrolyzer for hydrogen production[J]. Journal of Power Sources, 2022, 544: 231886.
[20]
ULLEBERG Ø. Modeling of advanced alkaline electrolyzers: A system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33.
[21]
SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345.
[22]
JANSSEN H, BRINGMANN J C, EMONTS B, et al. Safety-related studies on hydrogen production in high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2004, 29(7): 759-770.
[23]
JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287: 116554.

Funding

National Science and Technology Major Project(2024ZD0801905)
PDF(2031 KB)

Accesses

Citation

Detail

Sections
Recommended

/