PDF(3616 KB)
Key Technologies Supporting the Development of Next-Generation Coal-Fired Power Under the Goal of “Carbon Neutrality and Carbon Peaking”
GOU Wei, ZHANG Xunkui
Distributed Energy ›› 2025, Vol. 10 ›› Issue (5) : 1-9.
PDF(3616 KB)
PDF(3616 KB)
Key Technologies Supporting the Development of Next-Generation Coal-Fired Power Under the Goal of “Carbon Neutrality and Carbon Peaking”
To support the construction of a new power system and achieve the Carbon Neutrality and Carbon Peaking goals, it is imperative to clarify the development path of next-generation coal-fired power generation technologies. Through literature review and analysis of technological routes, this study systematically identifies key supporting technologies for the efficient, flexible, low-carbon, and intelligent transformation of coal power. The research findings indicate that high-performance metallic materials are essential for ensuring safe and reliable operation under wide load conditions and frequent start-stop cycles. Technologies such as wide-load combustion combined with nitrogen oxides co-control, chemical looping combustion (CLC), coal/biomass coupling, and green ammonia co-firing can significantly enhance regulation capabilities while reducing carbon emission intensity—where CLC can achieve carbon capture efficiencies exceeding 95%. The conclusion emphasizes that next-generation coal power must fulfill dual roles in “supply assurance” and “flexible regulation” By fostering multidimensional collaborative innovation across materials, combustion processes, fuels, and control systems, it is possible to ensure energy security while effectively supporting high proportions of renewable energy integration and facilitating a low-carbon transition in the electricity system.
next-generation coal power / chemical looping combustion (CLC)technology / coal/biomass coupling combustion power generation technology / wide-load combustion
| [1] |
黄震, 谢晓敏, 张庭婷. “双碳” 背景下我国中长期能源需求预测与转型路径研究[J]. 中国工程科学, 2022, 24(6): 8-18.
|
| [2] |
中国电力企业联合会. 2025年一季度全国电力供需形势分析预测报告[EB/OL].(2025-04-25)[2025-05-20]. https://www.cec.org.cn/detail/index.html3-344203.
|
| [3] |
刘吉臻, 杜忠明, 王庆华, 等. 新型电力系统下新一代煤电发展路径[J]. 新型电力系统, 2024, 2(4): 357-370.
|
| [4] |
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源, 2021, 6(6): 1-8.
|
| [5] |
张硕, 肖阳明, 李英姿, 等. 新型电力系统电-碳-绿证市场协同运行的区块链关键技术[J]. 电力建设, 2023, 44(11): 1-12.
新型电力系统是构建新型能源体系和实现“双碳”目标的基础支撑,电力市场、碳市场、绿证市场协同运行是实现新型电力系统市场化运行的必然路径。为此,提出了电-碳-绿证市场协同运行的区块链关键技术体系。首先,提炼了电-碳-绿证市场协同运行的体系架构,从产品、主体、政策3个角度分析了市场间的协同运作情况。其次,构建了基于区块链技术的市场运行体系:建立了一个统一的积分认证机制来衔接电-碳-绿证市场之间的交易标的物;结合区块链技术的智能合约确保交易的透明和可靠性;将共识机制结合积分认证应用于协同市场,确保参与方之间的一致性以及协同性;通过跟踪电力的来源去向,构建了电-碳-绿证溯源模型来确保电力数据的准确性。最后,提出建设电-碳-绿证体系建议,聚焦于政策、技术、试点三方面为新型电力系统市场化运行提供辅助决策。
New-type power system are the foundations and supports for building new energy systems and achieving dual-carbon reduction goals. The coordinated operation of electricity, carbon, and green certificate markets is an inevitable path for the marketization of new-type power system. To this end, this article proposes a blockchain system for the coordinated operation of electricity, carbon, and green certificate markets. First, we refine the system architecture governing the coordinated operation of the electricity-carbon-green certificate markets and analyze the collaborative operation among the markets from the perspective of each trading entity.Second, the market operation system based on blockchain technology is constructed: a unified point certification mechanism is established to connect the transaction objects between the electric-carbon-green certificate market; Smart contracts combined with blockchain technology ensure transparency and reliability of transactions; The consensus mechanism combined with the points certification is applied to the collaborative market to ensure the consistency and synergy between participants; By tracking the source of electricity, the electric-carbon-green certificate traceability model is constructed to ensure the accuracy of power data. Finally, the paper puts forward the suggestion of constructing the electric-carbon-green certificate system, focusing on the policy, technology and pilot three aspects to provide auxiliary decision for the market-oriented operation of the new power system. |
| [6] |
郭峰, 王悦, 陆鑫, 等. 含高比例风电的新型电力系统的经济运行及储能配置[J]. 智慧电力, 2023, 51(11): 76-82.
|
| [7] |
国家发展改革委, 国家能源局, 国家数据局. 关于印发《加快构建新型电力系统行动方案(2024—2027年)》的通知:发改能源〔2024〕1128号[A/OL]. (2024-07-25) [2025-05-20]. https://www.gov.cn/zhengce/zhengceku/202408/content_6966863.htm.
|
| [8] |
薛静. 新型电力系统下的电力供需研判新视角[J]. 中国电力企业管理, 2024(1): 70-72.
|
| [9] |
弭辙, 胡健祖, 郭珍妮, 等. 新型电力系统体系下新能源发展态势及市场化消纳研究[J]. 山东电力技术, 2023, 50(10): 1-8.
|
| [10] |
李军, 黄卫剑, 陈锦攀, 等. 一种适应新型电力系统的火电机组煤质在线校正方法[J]. 广东电力, 2023, 36(4): 118-123.
|
| [11] |
王放放, 杨鹏威, 赵光金, 等. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198.
“双碳”背景下,新能源开始大规模并网发电,但新能源发电的随机性与波动性对电网造成一定冲击,亟需构建新型电力系统。在这一过程中,作为电力系统的基石,传统火电将向提供可靠容量、调峰调频等辅助服务的基础保障性和系统调节性电源转型,火电机组的灵活性改造成为必然选择。分析了构建新型电力系统的阶段性目标及面临的困难与挑战,探讨了现阶段火电机组灵活性改造遇到的问题,结合火电运行数据,分析火电机组配置储能设备的技术途径。研究认为:构建新型电力系统过程中存在着电力系统不稳定、传统火电转型困难、能耗大、环保压力大等问题;火电机组本体的灵活性改造面临调峰能力不足、运行成本较高、负荷响应慢、运行能耗大及安全性不高等问题;通过火电加储能的运行模式会带来较好的经济效益和环境效益。
Under the background of “dual carbon”, new energy sources have begun to be connected to the grid on a large scale. However, the randomness and volatility of new energy generation significantly impact the power grid, making it urgent to build a new power system. As the cornerstone of the power system, traditional thermal power will transform into a basic security and system regulatory power supply, providing reliable capacity, peak regulation and frequency modulation and other auxiliary services. The flexible transformation of thermal power units has become an inevitable choice. The phased objectives, difficulties, and challenges of building a new power system were analyzed, along with the problems encountered in the flexible transformation of thermal power units at the present stage. Combined with thermal power operation data, the technical ways of configuring energy storage equipment for thermal power units were analyzed. The research shows that there are several issues in building a new power system, such as power system instability, difficulties in transforming traditional thermal power, high energy consumption, and environmental pressures. The flexibility transformation of thermal power units faces challenges such as insufficient peak regulation capacity, high operation costs, slow load response, high operation energy consumption, safety concerns, etc. The integration of thermal power and energy storage will bring better economic and environmental benefits. |
| [12] |
柴茂. 煤电新定位及转型发展方向[J]. 中国电力企业管理, 2022(31): 44-47.
|
| [13] |
国家发展改革委, 国家能源局.关于印发《新一代煤电升级专项行动实施方案(2025—2027年)》的通知:发改能源〔2025〕363号[A/OL]. (2025-03-26) [2025-05-20]. https://www.gov.cn/zhengce/zhengceku/202504/content_7018738.htm.
|
| [14] |
赵中华, 徐海玲, 郑志杰, 等. 山东电网“十四五” 调峰能力分析[J]. 山东电力技术, 2023, 50(10): 35-42.
|
| [15] |
汪淑艳, 顾欣. 煤电机组深度调峰锅炉侧设计问题探讨与研究[J]. 锅炉技术, 2023, 54(4): 13-17.
|
| [16] |
曲默丰, 李娟, 董乐, 等. 半周加热内螺纹管中超临界水传热特性的数值模拟及机理分析[J]. 动力工程学报, 2019, 39(11): 893-899.
为了研究700 ℃高效超超临界锅炉和超超临界循环流化床锅炉水冷壁管中工质水的流动传热规律和机理,采用SST k-ω湍流模型模拟了大比热容区内半周加热条件下长度为2 m、水力直径为19 mm的垂直上升四头内螺纹管中超临界水的流动传热特性。结果表明:半周加热条件下内螺纹管内壁温度和热流密度呈现类似抛物线分布,在内壁热流密度变化不大的局部区域(圆周角φ=0°~90°),内壁温度在肋底与背风侧交点处达到最大值,在肋顶与迎风侧交点处达到最小值,内壁热流密度的变化趋势与之相反,这是由内螺纹肋的旋流作用造成的,内壁热流密度的周向分布不是影响超临界水传热特性的唯一因素;超临界水发生传热强化现象主要是由于其在边界层内的比热容份额较大导致的,而与湍动能的大小无关。
To study the law and mechanism of heat transfer to working fluids flowing in water wall tubes of 700℃ efficient ultra supercritical boiler and ultra-supercritical circulating fluidized bed (CFB) boiler, the SST <i>k-ω</i> turbulence model was used to simulate the heat transfer to supercritical water flowing in a vertical upflow four-head internally ribbed tube with a length of 2 m and a hydraulic diameter of 19 mm in the region of large specific heat capacity under semi-circumferential heating conditions. Results show that the inner wall temperature and heat flux in the ribbed tube exibits in the feature of parabolic distribution under semi-circumferentially heating conditions. In the local region with little change in heat flux (<i>φ</i>=0°-90°), the inner wall temperature reaches the maximum at the intersection of rib root and leeward side wall, and reaches the minimum at the intersection of rib crest and windward side wall; however, the heat flux of inner wall shows an opposite trend, which is caused by the swirling action of internal ribs. The circumferential distribution of heat flux on the inner wall is not the only factor affecting the heat transfer characteristics of supercritical water. When the phenomenon of heat transfer enhancement occurs in the supercritical water, it is mainly due to the high share of specific heat in the boundary layer, which is independent of the magnitude of the turbulent kinetic energy.
|
| [17] |
刘入维, 肖平, 钟犁, 等. 700℃超超临界燃煤发电技术研究现状[J]. 热力发电, 2017, 46(9): 1-7,23.
|
| [18] |
王哮江, 刘鹏, 李荣春, 等. “双碳” 目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59.
|
| [19] |
樊启祥, 蒋敏华, 许世森, 等. 碳中和目标下新一代超高参数煤电机组技术体系[J]. 中国电机工程学报, 2024, 44(18): 7167-7178.
|
| [20] |
李振山, 李维成, 刘海洋, 等. 中国化学链燃烧技术研发进展与展望[J]. 中国电机工程学报, 2024, 44(18): 7200-7221.
|
| [21] |
张涛, 宋涛. 化学链燃烧技术研究进展[J]. 电力科技与环保, 2024, 40(6): 582-590.
|
| [22] |
王小雨, 赵海波. 化学链氧解耦燃煤发电系统过程模拟[J]. 洁净煤技术, 2024, 30(10): 49-57.
|
| [23] |
郑植, 沈骏, 刘雪松, 等. 固体燃料低碳燃烧技术研究进展[J]. 低碳化学与化工, 2024, 49(11): 70-80.
|
| [24] |
刘通, 王辰, 宋毅文, 等. 化学链燃烧减排二氧化碳技术展望[J]. 绿色矿山, 2024(2): 206-220.
|
| [25] |
赵一凡, 刘敦禹, 金晶. 化学链燃烧中载氧体结构设计对抗磨性的影响研究[J]. 动力工程学报, 2024, 44(4): 509-519.
在化学链反应过程中,载氧体作为氧和热量的载体起着至关重要的作用,载氧体设计一直是化学链技术研究的重点和难点。化学链燃烧通常发生在流化床反应器中,由于化学反应带来的化学应力对载氧体磨损贡献率最大,导致载氧体寿命大大缩短,有效成分流失。从载氧体结构设计角度出发,定性评价了不同复合载氧体的抗磨损机理:核壳结构抑制了活性组分的相分离现象,避免了由于活性组分表面磨损带来的载氧体失活;添加Al<sub>2</sub>O<sub>3</sub> 纤维和"铆钉"抑制了裂纹扩展,减缓了材料的磨损;添加燃料灰改善了复合载氧体的骨架强度,提高了载氧体抗磨性和抗结渣团聚性;利用复合载氧体的协同增效提高了反应活性,减缓了烧结团聚现象。从磨损动力学和使用寿命角度出发,定量比较了不同载氧体的磨损情况:通过对数拟合Gwyn 磨损动力学方程,求出不同载氧体拟合参数K和n,可以反映磨损机制和磨损变化规律。
During chemical looping combustion, oxygen carrier plays a crucial role as the carriers of oxygen and heat. Design of oxygen carrier has always been the emphasis and difficulty in chemical looping technology research. Chemical looping combustion usually occurs in a fluidized bed reactor. Since the chemical stress caused by chemical reactions has the greatest contribution rate to the abrasion of oxygen carrier, the life of oxygen carrier is significantly shortened and the effective components run away. From the perspective of oxygen carrier structure design, the anti-abrasion mechanism of different composite oxygen carriers was qualitatively evaluated. The core-shell structure inhibits the phase separation of the active components and avoids the deactivation of oxygen carrier caused by surface abrasion of the active components. The addition of Al<sub>2</sub>O<sub>3</sub> fiber and "rivet" inhibits crack growth and slows down the abrasion of the material. The addition of fuel ash improves the skeleton strength of the composite oxygen carriers, and the resistance to abrasion and slagging aggregation of oxygen carriers. The synergistic effect of the composite oxygen carrier increases the reactivity and slows down the sintering agglomeration phenomenon. From the perspective of abrasion dynamics and service life, the abrasion conditions of different oxygen carriers were quantitatively compared. By logarithmically fitting of the Gwyn abrasion dynamics equation, fitting parameters <i>K</i> and <i>n</i> of different oxygen carriers were calculated, which reflects the abrasion mechanism and abrasion patterns.
|
| [26] |
叶骥, 陈创庭, 黄慧, 等. 基于双因子学习曲线模型的化学链燃煤电站技术经济性[J]. 洁净煤技术, 2024, 30(8): 82-89.
|
| [27] |
王小雨. 新型化学链系统的构建与能量利用分析[D]. 武汉: 华中科技大学, 2023.
|
| [28] |
周忠科, 张忠友, 王晋伟. 低碳能源技术前沿追踪的方法与应用[M]. 北京: 企业管理出版社, 2023.
|
| [29] |
谭丽坪. 基于富氧燃烧和化学链技术的生物质气化及天然气耦合发电系统研究[D]. 武汉: 华中科技大学, 2023.
|
| [30] |
杨卧龙, 倪煜, 雷鸿. 燃煤电站生物质直接耦合燃烧发电技术研究综述[J]. 热力发电, 2021, 50(2): 18-25.
|
| [31] |
毛健雄. 燃煤耦合生物质发电[J]. 分布式能源, 2017, 2(5): 47-54.
|
| [32] |
毛健雄. 燃煤电站CO2减排技术的探讨[J]. 分布式能源, 2017, 2(1): 35-43.
|
| [33] |
高建刚, 姜亚鹏, 包宝青, 等. 绿氢转化制绿色甲醇与绿氨[J]. 化工进展, 2025, 44(4): 1987-1997.
绿色氢能有望在未来与基于可再生能源的新型电力系统并肩发展,共同助力碳中和目标的实现,它可在下游燃料、化工、炼钢、炼油等领域广泛应用,在所有的动力领域也有潜在应用前景。自2022年以来,绿色氢能在绿色甲醇、绿氨合成方面需求强劲,并有望在众多的氢能应用领域率先实现工业化。但绿色氢能究竟适用于合成甲醇还是合成氨,在技术和产业层面理解均不清晰。本文就绿氢转化制绿色甲醇和绿氨进行技术和产业层面分析,主要内容包括绿色甲醇、绿氨合成/分解技术介绍,过程及经济性的定性描述与定量分析等,试图给出一个较清晰的脉络,期盼为我国绿色氢能发展提供参考。
Green hydrogen energy is expected to develop alongside renewable energy power systems in the future, which contributes to the achievement of carbon neutrality goals. It can be widely used in fuel, chemical, steel, oil refining and other fields, and has potential application in all power fields. Since 2022, green hydrogen has shown strong demand for green methanol and green ammonia synthesis, and is expected to lead in industrialization in different hydrogen energy applications. However, whether green hydrogen energy is used to synthesize methanol or ammonia is not clearly understood at the technical and industrial levels. In this research, the technology and industry of green hydrogen conversion to green methanol and green ammonia were analyzed. The main contents of this paper included the introduction of green methanol and green ammonia synthesis/decomposition technology, qualitative description and quantitative analysis of the process and economy. This paper tryied to give a clear skeleton and hoped to provide reference for the development of green hydrogen in China. |
| [34] |
罗志斌, 孙潇, 蔡春荣, 等. 绿色氢基能源技术研究进展与产业化现状[J]. 南方能源建设, 2025, 12(3): 20-32.
|
| [35] |
王永康, 易俊, 谢晓頔. 风光氢氨醇一体化技术和产业综述[J]. 发电技术, 2025, 46(3): 556-569.
目的 绿氢、绿氨和绿色甲醇作为清洁能源和化工原料,对“双碳”目标的实现有重要作用,随着对清洁能源需求的日益增长,风光氢氨醇一体化产业应运而生,成为备受关注的新兴领域。然而我国风光氢氨醇一体化产业尚处于发展初期,产业链各环节仍存在大量问题,为此,有必要探索风光氢氨醇一体化相关技术并分析未来产业发展方向。 方法 首先,介绍了电解水制绿氢、合成绿氨、合成绿色甲醇的技术路线,并概述了应对风光电不稳定性相关技术;其次,分析了风光氢氨醇产业的经济性,介绍了多个重点项目的实施情况和近年来相关政策;再次,分析估测了制绿氨、绿色甲醇的电耗、水耗情况,并对制备绿氢、绿氨、绿色甲醇的成本进行预测,进一步针对风光氢氨醇产业化进程提出了技术创新、产业链协同和政策支持等产业发展建议;最后,分析了风光氢氨醇一体化产业未来的发展方向。 结论 未来风光氢氨醇一体化将呈现技术集成化、应用多元化、区域协同化、成本经济化趋势,成为实现“双碳”目标、重构能源体系的核心路径之一。
Objectives As clean energy sources and chemical raw materials, green hydrogen, green ammonia, and green methanol play an important role in achieving the “dual carbon” goal. With the increasing demand for clean energy, wind-solar-hydrogen-ammonia-methanol integrated industry has emerged as an important new field of interest. However, the industry in China is still in its early stages of development, with numerous challenges in various links of the industry chain. Therefore, it is necessary to explore the technologies related to wind-solar-hydrogen-ammonia-methanol integration and to analyze the future direction of its development. Methods Firstly, the technological routes of producing green hydrogen, synthesizing green ammonia, and synthesizing green methanol through water electrolysis are introduced, along with an overview of technologies addressing the instability of wind and solar power. Next, the economy of the wind-solar-hydrogen-ammonia-methanol integrated industry are analyzed, highlighting the implementation of key projects and related policies in recent years. Additionally, the electricity and water consumption for producing green ammonia and green methanol are analyzed and estimated, and the production costs of green hydrogen, green ammonia, and green methanol are predicted. Based on this, suggestions for industry development are proposed, including technological innovation, industry chain coordination, and policy support. Finally, the future development directions of the wind-solar-hydrogen-ammonia-methanol integrated industry are analyzed. Conclusions In the future, the integrated development of wind-solar-hydrogen-ammonia-methanol will show a trend of technological integration, diversified applications, regional coordination, and cost-effectiveness, making it one of the core pathways to achieve the “dual carbon” goals and transform the energy system. |
| [36] |
刘名瑞, 孙乾耀, 孙进. 绿氨燃料研究与应用展望[J]. 炼油技术与工程, 2025, 55(2): 56-59,64.
|
| [37] |
倪睿延, 张奇, 焦婕, 等. 绿电制氢合成氨煤电掺烧技术经济评价与未来展望[J]. 煤炭经济研究, 2025, 45(1): 177-188.
加快新能源发展和煤电低碳化改造是构建清洁低碳安全高效的新型电力系统的关键方式,但中国新能源装机的快速增长也带来了电力消纳、系统稳定运行以及实现经济效益等方面的挑战。在此背景下,绿电制氢合成氨煤电掺烧是一种同时解决新能源消纳、促进煤电低碳化改造的重要技术路径。然而,受产业链过长、经济参数繁多与支持政策不确定等多维因素影响,一体化技术经济性尚不明晰。因此,在厘清绿电制氢合成氨煤电掺烧一体化技术工艺流程的基础上,针对典型项目进行技术经济评价,同时就绿氢成本、碳价等关键因素进行敏感性分析与未来发展展望。研究结果表明:① 现有条件下,一体化项目整体亏损严重,项目绿氢生产成本为33.78元/kg,绿电成本(53.76%)与设备成本(30.38%)占比最大;② 掺烧比例增加导致经济性下降,但碳价上升可以缓解这一问题,碳价超过2 300元/t时,掺烧30%项目经济性优于掺烧10%项目;③ 绿氢成本是项目经济性的决定性因素,若碳价上升至750元/t,10%、20%、30%掺烧项目盈利所需绿氢临界成本分别为22.45、16.44、14.40元/kg。因此,尽管当前项目不具备经济性,但随着技术进步和碳价上升,成本收益有望大幅改善,从而推广落地。
|
| [38] |
沈明忠, 胡小夫, 沈建永, 等. 基于燃煤机组掺烧绿氨的碳减排量分析研究[J]. 综合智慧能源, 2024, 46(10): 67-72.
绿氨与煤基燃料混燃作为一种可行的燃煤机组碳减排路径,分析研究全链条CO<sub>2</sub>减排量不仅有利于推动绿氢和绿氨行业的发展,有效促进绿氢和绿氨的消纳,还有利于推动氨煤混燃发电技术的发展。以可再生能源发出的绿电制成绿氨并在燃煤机组上实现氨煤混燃发电为情景,对全链条CO<sub>2</sub>减排量进行测算,结果表明,采用445 GW·h绿电制备绿氨并在燃煤机组上进行掺烧发电,其全链条CO<sub>2</sub>减排量可达10.07 万t/a,绿电CO<sub>2</sub>减排量约226.29 g/(kW·h)且每年节省约956.65万元的碳减排成本。
Co-firing green ammonia with coal-based fuels is a feasible carbon reduction pathway for coal-fired power plants.Analyzing carbon reduction across the entire chain not only facilitates the development of the green hydrogen and green ammonia industries and effectively promotes their efficient utilization,but also supports the advancement of ammonia-coal co-firing technology.In a scenario where green ammonia was produced using renewable energy-powered green electricity and co-fired of ammonia with coal in coal-fired power plants, the total CO2 reduction throughout the chain was calculated.The results showed that using 445 GW·h of green electricity to produce green ammonia and co-firing it in coal-fired units achieved a total CO2 reduction of 100.7 thousand tons/year.The CO2 reduction per unit of green electricity was approximately 226.29 g/(kW·h),and annual carbon reduction cost savings were estimated at 9.5 665×106 yuan. |
| [39] |
杜逸云, 刘路尧, 陈越, 等. 耦合不同制氢技术的合成氨系统技术经济性分析及碳排放评估[J]. 热力发电, 2025, 54(5): 1-12.
|
| [40] |
程永林, 郑文广, 郝功涛, 等. 燃煤机组掺烧绿氨发电方案与经济性分析[J]. 能源与环境, 2025(2): 28-30.
|
| [41] |
张宇浩, 王宁, 郭占强. 我国弃风弃光电量合成氨路径的碳排放及经济效益分析[J]. 电气技术与经济, 2025(1): 221-225.
|
/
| 〈 |
|
〉 |