Comparison Analysis of Energy-Saving Heat Supply Scheme for 300 MW Circulating Fluidized Bed Power Units

LYU Jian, WU Xisheng, XIAO Yao, XU Peng, WANG Gang

Distributed Energy ›› 2016, Vol. 1 ›› Issue (3) : 55-62.

PDF(1324 KB)
PDF(1324 KB)
Distributed Energy ›› 2016, Vol. 1 ›› Issue (3) : 55-62. DOI: 10.16513/j.cnki.10-1427/tk.2016.03.009
Application Technology

Comparison Analysis of Energy-Saving Heat Supply Scheme for 300 MW Circulating Fluidized Bed Power Units

Author information +
History +

Abstract

The heat supply retrofitting is carried out on existing 300 MW sub-critical direct air cooling units to meet the increasing heating demand in northern China. Two waste heat utilization technologies for power plants were introduced, namely high back pressure heat supply and absorption heat pump heat supply. Based on the economic analysis of two waste heat utilization schemes, the proper solution was determined for the direct air-cooling power unit. The results show that high back pressure heat supply and absorption heat pump heat supply both have remarkable energy-saving effect, decreasing the total coal consumption. For given load, the coal rate of high back pressure heat supply is even lower than that of absorption heat pump heating with the maximum heating area and heating load. Specifically, under the maximum heating load, the coal rate is reduced to 168.9 g/(kW·h) and 197.2 g/(kW·h) through high back pressure and absorption heat pump heat supply. Under the same power load, the maximum heating load and heating area of high back pressure heat supply are 73.6 MW and 133.8×104 m2 higher than those of absorption heat pump heating.

Key words

heating transformation / waste heat utilization / coal rate / high back pressure

Cite this article

Download Citations
Jian LYU , Xisheng WU , Yao XIAO , et al . Comparison Analysis of Energy-Saving Heat Supply Scheme for 300 MW Circulating Fluidized Bed Power Units[J]. Distributed Energy Resources. 2016, 1(3): 55-62 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.03.009

References

[1]
李岩付林张世钢,等. 电厂循环水余热利用技术综述[J]. 建筑科学2010, 26(10): 10-14.
[2]
苏永. 300 MW直接空冷机组乏汽余热利用改造方案研究[J]. 环境保护与循环经济2016, 36(1): 42-46.
[3]
赵云凯刘汉涛张培华,等. 高背压供热与吸收式热泵供热能耗分析对比[J]. 煤炭技术2015, 34(2): 321-323.
ZHAO Yunkai, LIU Hantao, ZHANG Peihua, et al. Energy consumption analysis and contrast on high back pressure and absorption heat pump heating[J]. Coal Technology, 2015, 34(2): 321-323.
[4]
常立宏. 300 MW亚临界供热机组高背压供热改造的研究[J]. 黑龙江电力2012, 34(6): 421-423.
CHANG Lihong. Study of 300 MW subcritical heating unit high backpressure heating transformation[J]. Heilongjiang Electric Power, 2012, 34(6): 421-423.
[5]
史敬杰张晓静. 高背压供热技术在300 MW空冷供热机组的应用[J]. 科技展望2015, 25(28): 62.
[6]
汪滔. 吸收式热泵用于大连华能电厂的供暖改造研究[D]. 哈尔滨:哈尔滨工业大学,2010.
WANG Tao. Study on heating restruction of absorption heat pump in Dalian Power Plant of China Huneng Group[D]. Harbin: Harbin Institute of Technology, 2010.
[7]
陈玉勇. 基于吸收式热泵的热电联产系统节能研究[D]. 北京:华北电力大学,2014.
CHEN Yuyong. Energy saving research of cogeneration based on the absorption heat pump system[D]. Beijing: North China Electric Power University, 2014.
[8]
李浩李泽敏. 吸收式热泵循环水余热回收方案在300 MW机组的应用[J]. 科技视界2012(24): 298-299.
[9]
常立宏. 300 MW亚临界供热机组高背压供热改造研究[C]//大机组供热改造与优化运行技术2013年会. 苏州:中国电机工程学会,2013.
CHANG Lihong. Study of 300 MW subcritical heating unit high backpressure heating transformation[C]//Large Unit Heating Transformation and Optimization of the Operation. Suzhou: CSEE, 2013.
[10]
张攀杨涛杜旭,等. 直接空冷机组高背压供热技术经济性分析[J]. 汽轮机技术2014, 56(3): 209-212.
ZAHNG Pan, YANG Tao, DU Xu, et al. The economy analysis of the high back pressure heating technology on direct air-colled unit[J]. Steam Turbine Technology, 2014, 56(3): 209-212.
[11]
郑体宽. 热力发电厂[M]. 北京:中国电力出版社,2008.
[12]
王修彦. 工程热力学[M]. 北京:机械工业出版社,2009.

Funding

Project supported by National Natural Science Foundation of China(51476053)
PDF(1324 KB)

Accesses

Citation

Detail

Sections
Recommended

/