Optimization of Chiller and Heating Capacity Allocation for Distributed Energy Station Based on Typical Day Hourly Load

SONG Hongsheng

Distributed Energy ›› 2017, Vol. 2 ›› Issue (1) : 50-57.

PDF(1250 KB)
PDF(1250 KB)
Distributed Energy ›› 2017, Vol. 2 ›› Issue (1) : 50-57. DOI: 10.16513/j.cnki.10-1427/tk.2017.01.008
Application Technology

Optimization of Chiller and Heating Capacity Allocation for Distributed Energy Station Based on Typical Day Hourly Load

Author information +
History +

Abstract

Based on the typical day hourly cooling and heating load of a project, the optimization mathematical model for chiller,heating and energy storage capacity allocation of the distributed energy system is modeled. The reasonable objective function and constraint conditions are given, and the simplex algorithm is used to solve the optimization mathematical model. The life cycle initial investment and operation cost are served as the evaluation index, and the optimal capacity ratio of the chiller,heating and energy storage of the distributed energy system are discussed. The proposed method can decrease the investment, improve the utilization rate of equipment and operation economy of distributed energy system. For a distributed energy center of the office commercial complex in Beijing, the influences of electricity and natural gas price fluctuation on the chiller,heating and energy storage capacity allocation are studied, which provides a theoretical basis for the rational allocation and selection of distributed energy system.

Key words

typical day hourly cooling and heating load / life cycle cost / energy storage / energy station / capacity optimal allocation

Cite this article

Download Citations
Hongsheng SONG. Optimization of Chiller and Heating Capacity Allocation for Distributed Energy Station Based on Typical Day Hourly Load[J]. Distributed Energy Resources. 2017, 2(1): 50-57 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.008

References

[1]
罗凌睿何润民. 天然气在分布式能源系统中的应用[J]. 西南石油大学学报(社会科学版), 2010, 3(4):19-21.
LUO Lingrui, HE Runmin. Application of natural gas in distributed energy systems[J]. Journal of Southwest Petroleum University(Social Sciences Edition), 2010, 3(4):19-21.
[2]
金红光隋军. 变革性能源利用技术——分布式能源系统[J]. 分布式能源2016, 1(1):1-5.
JIN Hongguang, SUI Jun. Transformational technology inno-vation—Distributed energy system[J]. Distributed Energy, 2016, 1(1):1-5.
[3]
张晓晖陈钟颀. 热电冷联产系统的能耗特性[J]. 中国电机工程学报2007, 27(5):93-98.
ZHANG Xiaohui, CHEN Zhongqi. Energy consumption performance of combined heat cooling and power system[J]. Proceedings of the CSEE2007, 27(5):93-98.
[4]
陈斌叶彩花. 燃气冷热电三联供与地源热泵耦合系统的应用[J]. 煤气与热力2014, 34(9):27-31.
CHEN Bin, YE Caihua. Application of combined cooling, heating and power system coupled with ground-source heat pump[J]. Gas & Heat, 2014, 34(9):27-31.
[5]
岳伟挺沈巧练何中杰. 天然气分布式能源冷热电联供机组配置方案设计与研究[J]. 能源工程2015(6):37-41.
YUE Weiting, SHEN Qiaolian, HE Zhongjie. Design and study on project configuration of natural gas distributed energy unit combined cooling, heating and power supply[J]. Energy Engineering, 2015(6):37-41.
[6]
姒勇芳王玉刚匡环,等. 地源热泵与冰蓄冷耦合系统的设计与实现[J]. 中国计量学院学报2012, 23(1):48-51.
SI Yongfang, WANG Yugang, KUANG Huan, et al. Design and implementation of ground source heat pumps combined with ice thermal storage systems[J]. Journal of China Jiliang University, 2012, 23(1):48-51.
[7]
董兴杰谷波叶水泉,等. 地源热泵与冰蓄冷耦合系统的运行模拟[J]. 暖通空调2010, 40(6):45-48.
DONG Xingjie, GU Bo, YE Shuiquan, et al. Operation simulation of ground-source heat pump combined with ice thermal storage system[J]. Journal Heating Ventilating and Airconditioning, 2010, 40(6):45-48.
[8]
康英姿华贲. 区域供冷系统制冷主机设计容量的优化分配[J]. 华南理工大学学报(自然科学版), 2008, 36(2):117-121.
KANG Yingzi, HUA Ben. Optimal distribution of chiller design capacity in district cooling system[J]. Journal of South China University of Technology(Natural Science Edition), 2008, 36(2):117-121.
[9]
黄挺曹园树. 基于全年逐时负荷的分布式能源站制冷主机容量分配优化设计[J]. 暖通空调2015(9):30-33.
HUANG Ting, CAO Yuanshu. Optimization design of chiller capacity allocation for distributed energy station based on all-year hourly cooling load[J]. Heating Ventilating & Air Conditioning, 2015(9):30-33.
[10]
吴奕亮金家善辜健,等. 寿命周期费用技术及其应用要点[J]. 上海电力2004(4):273-280.
WU Yiliang, JIN Jiashan, GU Jian, et al. Life cycle cost technique and mian points concerning its application[J]. Shanghai Electric Power, 2004(4):273-280.
[11]
FANG Fang, WANG Q H, YANG Shi. A novel optimal operational strategy for the CCHP system based on two operating modes[J]. IEEE Transactions on Power Systems, 2012, 27(2):1032-1041.
[12]
吴杰郑拓梁志超,等. 基于遗传算法的分布式能源系统的优化设计[J]. 智能电网2005, 3(4):333-336.
WU Jie, ZHENG Tuo, LIANG Zhichao, et al. Genetic algorithm based optimization design of distributed energy system[J]. Smart Grid, 2005, 3(4):333-336.
[13]
岳永魁田中华陈清林,等. 基于环境火用经济学的分布式能源系统设计与运行优化策略研究[J]. 天然气工业2005, 25(2):179-182.
YUE Yongkui, TIAN Zhonghua, CHEN Qinglin, et al. Study on optimized design and operation strategy of environomics for distributed energy system[J]. Natural Gas Industry, 2005, 25(2):179-182.
[14]
徐林德. 分布式能源系统设计优化分析[J]. 能源工程2007(5):26-29.
XU Linde. Optimization analysis of design of distributed energy system[J]. Energy Engineering, 2007(5):26-29.
[15]
杨木和阮应君李志英,等. 三联供系统中逐时冷热电负荷的模拟计算[J]. 发电与空调2009, 30(4):85-88.
YANG Muhe, RUAN Yingjun, LI Zhiying, et al. Simulation of hourly cooling heating and electrical load in CCHP system[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2009, 30(4):85-88.
[16]
赵仕龙. 燃气冷热电三联供与地源热泵的联合应用[J]. 价值工程2015, 34(8):70-71.
ZHAO Shilong. Joint application of the cooling-heating-power supply and ground source heat pump[J]. Value Engineering, 2015, 34(8):70-71.
PDF(1250 KB)

Accesses

Citation

Detail

Sections
Recommended

/