Wind Farm Power Control Based on Energy Storage System

FENG Fei,REN Yuanyang,WANG Delin

Distributed Energy ›› 2017, Vol. 2 ›› Issue (2) : 20-24.

PDF(1497 KB)
PDF(1497 KB)
Distributed Energy ›› 2017, Vol. 2 ›› Issue (2) : 20-24. DOI: 10.16513/j.cnki.10-1427/tk.2017.02.003
Basic Research

Wind Farm Power Control Based on Energy Storage System

Author information +
History +

Abstract

Based on the analysis of various physical models of energy storage system, this paper proposes a universal energy storage model constructed from the data stream which is suitable for system electromechanical transient calculations. By adjusting the charging/discharging rate limit of energy storage system, storage capacity and other characteristic parameters, we simulate the impact of different energy storage systems on stabilizing wind farm output power fluctuation. In Matlab/Simulink environment, the energy storage model is in conjunction with that of the wind farm. Next, the simulation is performed using New England 10-machine 39-bus standard system. In order to optimize the performance of energy storage systems, we adopt particle swarm optimization (PSO) intelligent algorithm to optimize the PI controller parameters in energy storage module. Finally, the simulation results verify the validity of the universal energy storage model, which can provide some valuable reference for the stable transmission of active power and dynamic stability control in power system.

Key words

universal energy storage system / wind farm / particle swarm optimization (PSO) intelligent algorithm / power control

Cite this article

Download Citations
Fei FENG , Yuanyang REN , Delin WANG. Wind Farm Power Control Based on Energy Storage System[J]. Distributed Energy Resources. 2017, 2(2): 20-24 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.02.003

References

[1]
LUNA-RUBIO R, TREJO-PEREA M, VARGAS-VAZQUEZ D, et al. Optimal sizing of renewable hybrids energy systems: a review of methodologies[J]. Solar Energy, 2012(86): 1077-1088.
[2]
ABBEY C, JOOS G. A stochastic optimization approach to rating of energy storage systems in wind-diesel isolated grids[J]. IEEE Transactions on Power Systems, 2009, 24(1): 418-426.
[3]
BAJPAI P, DASH V. Hybrid renewable energy systems for power generation in stand-alone applications: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2926-2939.
[4]
BREKKEN T K A, YOKOCHI A, JOUANNE A V, et al. Optimal energy storage sizing and control for wind power applications[J]. IEEE Transactions on Sustainable Energy, 2011, 2(1): 69-77.
[5]
CONG T N. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009(3): 291-312.
[6]
舒军. 风光储系统中储能单元的平滑控制方法研究[D]. 成都:电子科技大学,2012.
[7]
陈中杜文娟王海风,等. 基于阻尼转矩分析法的储能系统抑制系统低频振荡[J]. 电力系统自动化2009, 33(12): 8-11.
CHEN Zhong, DU Wenjuan, WANG Haifeng, et al. Research on storage equipment to suppressing power system of low frequency oscillation with DTA algorithm[J]. Automation of Electric Power Systems, 2009, 33(12): 8-11(in Chinese).
[8]
汪新园. 大规模风电接入电力系统的可靠性评估及储能策略研究[D]. 杭州:浙江大学,2013.
[9]
朱武操瑞发应彭华,等. 超级电容器系统在改善并网风电场输出中的应用[J]. 电网技术2008, 32(S2): 256-259.
ZHU Wu, CAO Ruifa, YING Penghua, et al. Application of SCESS in improving stability of power system connected with wind farms[J]. Power System Technology, 2008, 32(S2): 256-259(in Chinese).
[10]
王剑刘天琪李兴源. 风电场及储能装置对发输电系统可靠性的影响[J]. 电网技术2011, 35(5): 165-170.
WANG Jian, LIU Tianqi, LI Xingyuan. Influences of connecting wind farms and energy storage devices to power grid on reliability of power generation and transmission system[J]. Power System Technology, 2011, 35(5): 165-170(in Chinese).
[11]
李妍荆盼盼王丽,等. 通用储能系统数学模型及其PSASP建模研究[J]. 电网技术2012, 36(1): 51-57.
LI Yan, JING Panpan, WANG Li, et al. A mathematical model of versatile energy storage system and its modeling by power system analysis software package[J]. Power System Technology, 2012, 36(1): 51-57(in Chinese).
[12]
张崇巍张兴. PWM整流器及其控制[M]. 北京:机械工程出版社,2003.
[13]
于群曹娜. MATLAB/Simulink电力系统建模与仿真[M]. 北京:机械工业出版社,2011.
[14]
ZIELINSKI K, WEITKEMPER P, LAUR R, et al. Optimization of power allocation for interference cancellation with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1): 128-150.
[15]
PEDRASA M, SPOONER T D, MACGILL I F. Scheduling of demand side resources using binary particle swarm optimization[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1173-1181.
[16]
张智晟林涛. 电力系统经济负荷分配的量子粒子群算法[J]. 电工电能新技术2008(4): 1-4, 13.
ZHANG Zhisheng, LIN Tao. Research on power system of economic load dispatch with quantum-behaved particle swarm optimization algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2008(4): 1-4, 13(in Chinese).
[17]
于赞梅刘观起刘森. 基于双适应度微粒群优化算法的最优潮流计算[J]. 电气应用2007(4): 25-29.
YU Zanmei, LIU Guanqi, LIU Sen. Research on optimal power flow with double fitness particle swarm optimization algorithm[J]. Electrotechnical Application, 2007(4): 25-29(in Chinese).
[18]
史峰王辉郁磊,等. MATLAB智能算法30个案例分析[M]. 北京:北京航空航天大学出版社,2011.
[19]
周志超王成山郭力. 变速变桨距风电机组的全风速限功率优化控制[J]. 中国电机工程学报2015, 35(8): 1837-1844.
ZHOU Zhichao, WANG Chengshan, GUO Li. Output power curtailment control of variable-speed variable-pitch wind turbine generator at all wind speed regions[J]. Proceedings of the CSEE, 2015, 35(8): 1837-1844(in Chinese).

Funding

Project Supported by National Natural Science Foundation of China(51477143)
PDF(1497 KB)

Accesses

Citation

Detail

Sections
Recommended

/