Capacity Optimization Configuration of Hybrid Energy Storage System for Smoothing Wind Power Fluctuation

JIN Wenhao,LIU Jichun

Distributed Energy ›› 2017, Vol. 2 ›› Issue (2) : 32-38.

PDF(1126 KB)
PDF(1126 KB)
Distributed Energy ›› 2017, Vol. 2 ›› Issue (2) : 32-38. DOI: 10.16513/j.cnki.10-1427/tk.2017.02.005
Basic Research

Capacity Optimization Configuration of Hybrid Energy Storage System for Smoothing Wind Power Fluctuation

Author information +
History +

Abstract

Wind power have the characteristic of generation output variability. To reduce the impact of power fluctuations on grids and improve the power quality of power system, this paper puts forward the capacity optimization configuration of hybrid energy storage system for smoothing wind power fluctuation. The paper adopts moving-average method to filter the fluctuation of power and smooth wind power. The window length of moving-average method will affect the smoothing effect of power and the capacity configuration of hybrid energy storage system, so we consider the fluctuation limit of grid power as constraints to determine the window length, then achieve its optimal choice. We use the method of spectrum analysis to decompose the fluctuation of wind power, and take the minimum annual comprehensive cost as the objective function to determine the compensation frequency bands of the super capacitor and the battery respectively, and then determine the charge and discharge power. Finally, we establish a cost model of hybrid energy storage system considering battery life loss, and verify the feasibility and economic superiority of the program through case analysis.

Key words

super capacitor / battery / hybrid energy storage system / life loss / moving-average method / spectrum analysis

Cite this article

Download Citations
Wenhao JIN , Jichun LIU. Capacity Optimization Configuration of Hybrid Energy Storage System for Smoothing Wind Power Fluctuation[J]. Distributed Energy Resources. 2017, 2(2): 32-38 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.02.005

References

[1]
曹超马玉鑫常悦,等. 基于经验模态分解和模糊机会约束的混合储能容量配置方法[J]. 分布式能源2016, 1(3): 43-48.
CAO Chao, MA Yuxin, CHANG Yue, et al. Capacity allocation method of hybrid energy storage system based on empirical mode decomposition and fuzzy chance constrained programming[J]. Distributed Energy, 2016, 1(3): 43-48.
[2]
陈谦陈霄逸金宇清,等. 基于混合储能的大型风电场优化控制[J]. 电力自动化设备2015, 35(4): 76-70.
CHEN Qian, CHEN Xiaoyi, JIN Yuqing, et al. Optimal control of large-scale wind farm based on hybrid energy storage[J]. Electric Power Automation Equipment, 2015, 35(4): 76-70.
[3]
张蕴昕孙运全. 混合储能在风光互补微网中的控制策略[J]. 电力系统保护与控制2015, 43(21): 93-97.
ZHANG Yunxin, SUN Yunquan. Control strategy of a hybrid energy storage in wind-solar hybrid generation micro-grid[J]. Power System Protection and Control, 2015, 43(21): 93-97.
[4]
刘世林文劲宇孙海顺. 适用于风电功率调控的复合储能系统及其控制策略[J]. 中国电机工程学报2015, 35(1): 95-101.
LIU Shilin, WEN Jinyu, SUN Haishun. Hybrid energy storage system and its control strategies intended for wind power conditioning[J]. Proceedings of the CSEE, 2015, 35(1): 95-101.
[5]
程启明徐聪程尹曼,等. 基于混合储能技术的光储式充电站直流微网系统协调控制[J]. 高电压技术2016, 42(7): 2073-2083.
CHENG Qiming, XU Cong, CHENG Yinman, et al. Coordination control of PV charging station DC microgrid system based on hybrid energy storage technology[J]. High Voltage Engineering, 2016, 42(7): 2073-2083.
[6]
蒋平熊华川. 混合储能系统平抑风力发电输出功率波动控制方法设计[J]. 电力系统自动化2013, 37(1): 122-126.
JIANG Ping, XIONG Huachuan. A control scheme design for smoothing wind power fluctuation with hybrid energy storage system[J]. Automation of Electric Power Systems, 2013, 37(1): 122-126.
[7]
刘方杨秀时珊珊,等. 不同时间尺度下基于混合储能调度的微网能量优化[J]. 电网技术2014, 38(11): 3079-3087.
LIU Fang, YANG Xiu, SHI Shanshan, et al. Hybrid energy storage scheduling based microgrid energy optimization under different time scales[J]. Power System Technology, 2014, 38(11): 3079-3087.
[8]
马速良马会萌蒋小平,等. 基于Bloch球面的量子遗传算法的混合储能系统容量配置[J]. 中国电机工程学报2015, 35(3): 592-597.
MA Suliang, MA Huimeng, JIANG Xiaoping, et al. Capacity configuration of the hybrid energy storage system based on Bloch spherical quantum genetic algorithm[J]. Proceedings of the CSEE, 2015, 35(3): 592-597.
[9]
孙承晨袁越CHOI S S, 等. 基于经验模态分解和神经网络的微网混合储能容量优化配置[J]. 电力系统自动化2015, 39(8): 19-25.
SUN Chengchen, YUAN Yue, CHOI S S, et al. Capacity optimization of hybrid energy storage system in micro-grid using empirical mode decomposition and neural network[J]. Automation of Electric Power Systems, 2015, 39(8): 19-25.
[10]
孙纯军倪春花窦晓波. 基于SOC状态反馈的混合储能功率优化策略[J]. 电测与仪表2016, 53(15): 81-87.
SUN Chunjun, NI Chunhua, DOU Xiaobo. Research on optimal power allocation strategy based on SOC state feedback in hybrid energy storage system[J]. Electrical Measurement & Instrumentation, 2016, 53(15): 81-87.
PDF(1126 KB)

Accesses

Citation

Detail

Sections
Recommended

/