Analysis and Selection of 60 MW/30 MW Biomass Gasification System Layout Scheme

WU Zhiquan,WU Yueming

Distributed Energy ›› 2018, Vol. 3 ›› Issue (1) : 7-13.

PDF(8829 KB)
PDF(8829 KB)
Distributed Energy ›› 2018, Vol. 3 ›› Issue (1) : 7-13. DOI: 10.16513/j.cnki.10-1427/tk.2018.01.002
Technology of Biomass Gasification-Coal Coupling for Power Generation

Analysis and Selection of 60 MW/30 MW Biomass Gasification System Layout Scheme

Author information +
History +

Abstract

The 20 MW/10 MW combined electricity generate system is studied which contents the biomass gasifier with the thermal power 60 MW/30 MW and the 660 MW coal fired boilers. In the negative-positive pressure single circulating fluidized bed gasification system, the circulating fluidized bed and fixed, bed system which tandem the two functions gasification and pyrogenic decomposition, the dual circulating fluidized bed combustion, gasification tandem bed system, specific analysis, argumentation and comparison are carried out from the engineering application and project demonstration perspective for the system's layout scheme. For variety of biomass fuel, ‘the positive pressure circulating fluidized bed gasifier and heat exchanger system’,and ‘the positive pressure circulating fluidized bed+positive pressure fixed bed+semi-coke back bed/straight row system’ are considered as alternative optimize scheme. After the implementation of the project, it will make important demonstration effect on the coupling of biomass gasification and coal combustion boilers.

Key words

circulating fluidized bed / biomass gasification system / scheme optimization

Cite this article

Download Citations
Zhiquan WU , Yueming WU. Analysis and Selection of 60 MW/30 MW Biomass Gasification System Layout Scheme[J]. Distributed Energy Resources. 2018, 3(1): 7-13 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.01.002

References

[1]
吴智泉韩中合向鹏,等. 生物质气化与燃煤耦合发电系统能流和流分析[J]. 分布式能源2017, 2(6): 8-13.
WU Zhiquan, HAN Zhonghe, XIANG Peng, et al. Energy and exergy flow analysis of biomass gasification-coal coupling power generation system[J]. Distributed Energy, 2017, 2(6): 8-13.
[2]
何培红沈冶常平,等. 10.8 MW生物质气化再燃发电项目工业应用[C]//中国电机工程学会清洁高效发电技术协作网2014年会,银川,2014.
[3]
高扬肖军沈来宏. 串行流化床生物质气化制取富氢气体模拟研究[J]. 太阳能学报2008, 29(7): 894-899.
GAO Yang, XIAO Jun, SHEN Laihong. Hydrogen production from biomass gasification in interconnected fluidized beds[J]. Acta Energiae Solaris Sinica, 2008, 29(7): 894-899.
[4]
王红梅张现飞张兰珍,等. 流化床生物质气化发电过程动力学建模与验证[J]. 可再生能源2011, 29(4): 48-52.
WANG Hongmei, ZHANG Xianfei, ZHANG Lanzhen, et al. Kinetic modeling and verification of the biomass gasification by fluidized bed[J]. Renewable Energy Resources, 2011, 29(4): 48-52.
[5]
吴正舜马隆龙吴创之. 下吸式气化炉中生物质气化发电的运行与测试[J]. 煤炭转化2003, 26(4): 79-82.
WU Zhengshun, MA Longlong, WU Chuangzhi. Performance and testing of power generation from biomass gasification by downdraft gasifier[J]. Coal Conversion, 2003, 26(4): 79-82.
[6]
聶鑫蕊殷科孙军. 适于区域生物质特性的生物质气化技术的研究进展[J]. 四川环境2017(2): 155-160.
[7]
杜厚浩. 生物质气化混燃发电气化炉系统自动控制研究[J]. 大陆桥视野2016(18): 173-175.
[8]
郭东彦伊晓路徐健,等. 生物质循环流化床循环特性研究[J]. 可再生能源2004, 22(6): 23-25.
GUO Dongyan, YI Xiaolu, XU Jian, et al. The study of cycling characteristic in circulating fluidized bed with biomass[J]. Renewable Energy Resources, 2004, 22(6): 23-25.
[9]
吴家桦沈来宏肖军,等. 串行流化床生物质气化制取合成气试验研究[J]. 中国电机工程学报2009, 29(11): 111-118.
WU Jiahua, SHEN Laihong, XIAO Jun, et al. Experimental study on syngas production from biomass gasification in interconnected fluidized beds[J]. Proceedings of the CSEE, 2009, 29(11): 111-118.
[10]
王炎昌. 生物质气化中焦油的催化转化[D]. 郑州:郑州大学,2005.
WANG Yanchang. Catalytic conversion of tar in biomass gasification[D]. Zhengzhou: Zhengzhou University. 2005.
[11]
赵冰. 生物质气化发电技术在我国的应用[J]. 中国科技成果2012(20): 4-5.
ZHAO Bing. The application of biomass gasification power generation technology in China[J]. China Science and Technology Achievements, 2012(20): 4-5.
[12]
甄恩明蔡正达王文红. 浅论生物质气化发电技术及应用潜力[C]//电力与可持续发展——2011年云南电力技术论坛,昆明,2011.
PDF(8829 KB)

Accesses

Citation

Detail

Sections
Recommended

/