Integrated Resource Planning for Distribution Network With Stochastic Distributed Generation

CHEN Haoyong,WANG Zengyu,QIU Zengyu

Distributed Energy ›› 2018, Vol. 3 ›› Issue (6) : 54-59.

PDF(959 KB)
PDF(959 KB)
Distributed Energy ›› 2018, Vol. 3 ›› Issue (6) : 54-59. DOI: 10.16513/j.cnki.10-1427/tk.2018.06.008
Optimization Planning of Active Distribution Network

Integrated Resource Planning for Distribution Network With Stochastic Distributed Generation

Author information +
History +

Abstract

With the fast development of distributed generation (DG) and demand response (DR), the issue of distribution network planning becomes increasingly important. The mathematical model of integrated resource planning for distribution network considering DG and DR is established. The stochasticity of wind power is considered, and a hybrid intelligent algorithm is used to solve the problem, aiming to obtain the distribution network planning scheme with the highest system reliability and economy. When choosing the optimal objective function, many factors are considered at the same time, including the network loss cost of power system, the investment cost and operating cost of DG, the interruptible load compensation cost considering DR, the saving of electricity purchase after introduction of DG, the environmental benefits after optimization, etc. The hybrid intelligent algorithm based on support vector machine and particle swarm optimization algorithm are adopted for the DG planning. Finally, an actual distribution network in China is taken as an example to verify the improvement effect of the proposed algorithm on system reliability and economy.

Key words

integrated resource planning / distribution network planning / distributed generation (DG) / demand response (DR) / hybrid intelligent algorithm

Cite this article

Download Citations
Haoyong CHEN , Zengyu WANG , Ziyue QIU. Integrated Resource Planning for Distribution Network With Stochastic Distributed Generation[J]. Distributed Energy Resources. 2018, 3(6): 54-59 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.06.008

References

[1]
WANG Jian, LI Xingyuan, QIU Xiaoyan. Power system research on distributed generation penetration[J]. Automation of Electric Power Systems, 2005, 29(24): 90-97.
王建,李兴源,邱晓燕. 含有分布式发电装置的电力系统研究综述[J]. 电力系统自动化2005, 29(24): 90-97.
[2]
DENG Wei, LI Xinran, LIU Zhiyong, et al. Comprehensive optimal allocation of intermittent distributed generation considering reactive power compensation[J]. Proceedings of the CSEE, 2012, 32(10): 12, 80-88.
邓威,李欣然,刘志勇,等. 考虑无功补偿影响因素的间歇性分布式电源综合优化配置[J]. 中国电机工程学报2012, 32(10): 12, 80-88.
[3]
ZHANG Shenxi, CHENG Haozhong, XING Haijun, et al. Review of DG planning considering uncertainties for distribution network[J]. Electric Power Automation Equipment, 2016, 36(8): 1-9.
张沈习,程浩忠,邢海军,等. 配电网中考虑不确定性的分布式电源规划研究综述[J]. 电力自动化设备2016, 36(8): 1-9.
[4]
WANG Shouxiang, WANG Hui, CAI Shengxia. A review of optimization allocation of distributed generations embedded in power grid[J]. Automation of Electric Power Systems, 2009, 33(18): 110-115.
王守相,王慧,蔡声霞. 分布式发电优化配置研究综述[J]. 电力系统自动化2009, 33(18): 110-115.
[5]
FU Xueqian, CHEN Haoyong, LIU Guote, et al. Power quality comprehensive evaluation method for distributed generation[J]. Proceedings of the CSEE, 2014, 34(25): 4270-4276.
付学谦,陈皓勇,刘国特,等. 分布式电源电能质量综合评估方法[J]. 中国电机工程学报2014, 34(25): 4270-4276.
[6]
ZHOU Fuqiu, WANG Juan. Situations and suggestions of national DSM work[J]. Power Demand Side Management, 2015, 17(2): 1-4.
周伏秋,王娟. 我国电力需求侧管理工作面临的形势及建议[J]. 电力需求侧管理2015, 17(2): 1-4.
[7]
GAO Ciwei, CHEN Xihan, CHEN Jianghua, et al. Measures and application of China's demand response[J]. Power Demand Side Management, 2013, 15(1): 1-4, 6.
高赐威,陈曦寒,陈江华,等. 我国电力需求响应的措施与应用方法[J]. 电力需求侧管理2013, 15(1): 1-4, 6.
[8]
ZHANG Zhichang, CHEN Jingsheng, LI Bin, et al. Present situation and development tendency of standardization demand response information of exchange in China[J]. Power System Technology, 2018, 42(4): 1183-1190.
张志昌,陈京生,李彬,等. 我国需求响应信息交换标准化现状及发展趋势[J]. 电网技术2018, 42(4): 1183-1190.
[9]
XU Jianwei, AN Yunzhan. Research on access point selection and constant capacity of distributed power supply access to distribution network[J]. Electric Engineering, 2018(20): 81-83.
许健伟,安允展. 分布式电源接入配电网的接入点选择和定容研究[J]. 电工技术2018(20): 81-83.
[10]
ZHANG Yusen, KONG Xiangyu, SUN Bowei, et al. Multi-time scale home energy management strategy based on electricity demand response[J]. Power System Technology, 2018, 42(6): 1811-1819.
张禹森,孔祥玉,孙博伟,等. 基于电力需求响应的多时间尺度家庭能量管理优化策略[J]. 电网技术2018, 42(6): 1811-1819.
[11]
YAN Huaguang, CHEN Songsong, ZHONG Ming, et al. Research and design of demand side energy efficiency management and demand response system[J]. Power System Technology, 2015, 39(1): 42-47.
闫华光,陈宋宋,钟鸣,等. 电力需求侧能效管理与需求响应系统的研究与设计[J]. 电网技术2015, 39(1): 42-47.
[12]
ZHANG Jing, WANG Ting, LI Bin. Research on technical standardization for electric demand response[J]. Proceedings of the CSEE, 2014, 34(22): 3623-3629.
张晶,王婷,李彬. 电力需求响应技术标准化研究[J]. 中国电机工程学报2014, 34(22): 3623-3629.
[13]
LI Dan, CHEN Haoyong. Algorithm research of load flow of distribution network with different distributed generations[J]. East China Electric Power, 2011, 39(1): 76-80.
李丹,陈皓勇. 分布式电源混合并网的配电网潮流算法研究[J]. 华东电力2011, 39(1): 76-80.
[14]
宋平. 需求响应在国外电力削峰填谷中的应用[J]. 上海节能2004(2): 47-50.
[15]
CHARNES A, COOPER W W. Chance-constrained pro-gramming[J]. Management Science, 1959, 6(1): 73-79.

Funding

Project supported by the National Basic Research Program of China (973 Program)(2016YFB0900102)
PDF(959 KB)

Accesses

Citation

Detail

Sections
Recommended

/