On-Line Detection Method of Ice on Wind Turbine Blade Driven by Data

ZHENG Ruonan

Distributed Energy ›› 2019, Vol. 4 ›› Issue (1) : 1-7.

PDF(5847 KB)
PDF(5847 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (1) : 1-7. DOI: 10.16513/j.cnki.10-1427/tk.2019.01.001
Basic Research

On-Line Detection Method of Ice on Wind Turbine Blade Driven by Data

Author information +
History +

Abstract

With the development of the wind turbine, the icing problem of wind turbine blades under low temperature and humidity has been paid more and more attention. When the blades freeze, it causes the power loss of the wind turbine, causing the blades to break up in severe time, resulting in huge power loss and maintenance costs. At present, when the wind turbine issues an alarm about icing, the ice conditions are usually very serious. So it is necessary to achieve the early prediction of icing about wind turbine blades. In this paper, data driven method is used to predict the blade icing of wind turbine, the blade states are identified by initial data preprocessing, feature extraction, model construction and training. Logical Regression model and XGBoost model are constructed respectively. Then, the accuracy and prediction time of the above two models for blade icing prediction are analyzed and compared. Finally, the model suitable for online detection of blade icing is obtained. Through calculation and analysis, the XGBoost model is better than the Logistic Regression model in predicting blade icing, and the prediction time is only 0.449 seconds, which can fully achieve the purpose of online detection.

Key words

wind turbine / blade icing / data-driven / Logistic Regression model / XGBoost model

Cite this article

Download Citations
Ruonan ZHENG. On-Line Detection Method of Ice on Wind Turbine Blade Driven by Data[J]. Distributed Energy Resources. 2019, 4(1): 1-7 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.01.001

References

[1]
2017年中国风电装机容量统计[J]. 风能2018(5): 44-46.
[2]
DAVIS N N, PINSON P, HAHMANN A N, et al. Identifying and characterizing the impact of turbine icing on wind farm power generation[J]. Wind Energy, 2016, 19(8): 1503-1518.
[3]
ZHU Chengxiang, WANG Long, SUN Zhiguo, et al. Numerical study of wind turbine blade airfoil ice accretion[J]. Acta Aerodynamica Sinica, 2011, 29(4): 522-528.
朱程香,王珑,孙志国,等. 风力机叶片翼型的结冰数值模拟研究[J]. 空气动力学学报. 2011, 29(4): 522-528.
[4]
HAO Yanpeng, LIU Guote, YANG Lin, et al. Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300.
郝艳捧,刘国特,阳林,等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报. 2015, 30(10): 292-300.
[5]
孙少华,徐洪雷,符鹏程,等. 叶片覆冰对风电机组的影响[J]. 风能. 2014(9): 100-103.
[6]
SHI Q. Model-based detection for ice on wind turbineblades[D]. NTNU, 2017.
[7]
KIM D, SAMPATH U, KIM H, et al. A fiber-optic ice detection system for large-scale wind turbine blades[C]//Society of Photo-optical Instrumentation Engineers, 2017.
[8]
MUÑOZ C Q G, MÁRQUEZ F P G, TOMÁS J M S. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163.
[9]
BERBYUK V, PETERSON B, JAN MÖLLER. Towards early ice detection on wind turbine blades using acoustic waves[C]//Proceedings of SPIE—The International Society for Optical Engineering, 2014, 9063.
[10]
WANG Peng. Wind turbine blade ice detection based on ultrasonic guided wave method[D]. Harbin: Harbin Institute of Technology, 2016.
王鹏. 基于超声导波方法的风机叶片覆冰检测[D]. 哈尔滨:哈尔滨工业大学,2016.
[11]
DAVIS N N, BYRKJEDAL Ø, HAHMANN A N, et al. Ice detection on wind turbines using the observed power curve[J]. Wind Energy. 2016, 19(6): 999-1010.
[12]
KHALIULLIN E. Wind turbine indirect ice detection and operational analysis[D]. Lappeenranta University of Techonology, 2016.
[13]
风机运行脱敏数据[EB/OL]. (2017-07-15)[2018-11-20].
[14]
中国信息通信研究院. 工业大数据创新竞赛白皮书:风机结冰故障指南[R/OL]. (2018-01)[2018-11-20].
[15]
MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow onstructures[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2000, 358(1776): 2913-2939.
[16]
FINSTAD K J, LOZOWSKI E P, GATES E M. A computational investigation of water droplet trajectories[J]. Journal of Atmospheric & Oceanic Technology. 1958, 5(1): 160-170.
[17]
YE Chunlin, QIU Yingning, FENG Yanhui. Fault diagnosis of wind turbine blade icing based on data mining[J]. Noise and Vibration Control, 2018, 38(): 285-289.
Abstract
S2
叶春霖,邱颖宁,冯延晖. 基于数据挖掘的风电机组叶片结冰故障诊断[J]. 噪声与振动控制2018, 38(): 285-289.
S2
PDF(5847 KB)

Accesses

Citation

Detail

Sections
Recommended

/