Smart Wind Power System Architecture

WU Zhiquan, WANG Zhengxia

Distributed Energy ›› 2019, Vol. 4 ›› Issue (2) : 8-15.

PDF(13276 KB)
PDF(13276 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (2) : 8-15. DOI: 10.16513/j.cnki.10-1427/tk.2019.02.002
Basic Research

Smart Wind Power System Architecture

Author information +
History +

Abstract

With the rapid development of artificial intelligence and other related technologies, domestic and foreign power generation enterprises are promoting smart power project to improve the core competitiveness. Aiming at the current the basic characteristics and intelligence level of wind power, based on heterogeneous computing and elastic resource configurations, this paper explores and studies the architecture of smart wind power from two dimensions of wind power production management and information system, and expounds its basic characteristics of openness, learning, growth, heterogeneity and friendliness by analyzing key technologies. Then we further analyze different levels of intelligence for the smart wind power system, such as accurate perception, rapid response, systematic thinking and comprehensive opening.

Key words

smart wind power / system architecture / intelligence sense / elastic computing / resource configurations

Cite this article

Download Citations
Zhiquan WU , Zhengxia WANG. Smart Wind Power System Architecture[J]. Distributed Energy Resources. 2019, 4(2): 8-15 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.02.002

References

[1]
DYKES K, HAND M, STEHLY T, et al. Enabling the SMART wind power plant of the future through science-based innovation[R]. USA: National Renewable Energy Laboratory, 2017.
[2]
HEWITT S, MARGETTS L, REVELL A. Building a digital wind farm[J]. Archives of Computational Methods in Engineering, 2018, 25(4): 879-899.
[3]
KUIK V G A M. Long-term research challenges in wind energy: a research agenda by the European Academy of Wind Energy[J]. Wind Energ. Sci., 2016, 1(1): 1-39.
[4]
SHARMA R N, MADAWALA U K. The concept of a smart wind turbine system[J]. Renewable Energy, 2012, 39(1): 403-410.
[5]
ZHU Cheng. Envision “intelligent wind field management”:using internet of things technology to realize “unattended”[J]. China Information Security, 2016(10): 60-62.
朱程. 远景“智慧风场管理”:运用物联网技术实现“无人值守”[J]. 中国信息安全2016(10): 60-62.
[6]
LI Yishan. Smart wind plant: exploring the best operating mode[J]. Marine and Fisheries, 2018(5): 68-69.
李易珊. 智慧风电场:探索最佳运营模式[J]. 海洋与渔业2018(5): 68-69.
[7]
HE Lirong, LIU Chunbo. Building intelligent power plants based on cloud computing, big data, internet of things and mobile internet[J]. China Plant Engineering, 2018(4): 12-17.
何立荣,刘春波. 构建云、大、物、移的智能电厂[J]. 中国设备工程2018(4): 12-17.
[8]
WANG Gang. Thought on the construction of intelligent power plant[J]. Techniques of Automation and Applications, 2018, 37(2): 1-3, 21.
王刚. 关于智能化电厂建设的思考[J]. 自动化技术与应用2018, 37(2): 1-3, 21.
[9]
ZHANG Jinbin, ZHOU Siwei. Study on the concept of the smart power plant and its architecture model[J]. Electric Power, 2018, 51(10): 2-7.
张晋宾,周四维. 智能电厂概念及体系架构模型研究[J]. 中国电力2018, 51(10): 2-7.
[10]
CUI Qingru, LI Gengda, NIU Yuguang. Architecture of the intelligent power generation technial specification for electric power enterprises[J]. Electric Power, 2018, 51(10): 32-36.
崔青汝,李庚达,牛玉广. 电力企业智能发电技术规范体系架构[J]. 中国电力2018, 51(10): 32-36.
[11]
刘吉臻. 智能发电系统体系架构及其关键技术[EB/OL]. [2018-05-08].
[12]
WU Zhiquan, XU Haoyu, CHEN Jianwen. Research on develop-ment strategy of environment-friendly wind power projects[J]. China Economic & Trade Herald, 2018(2): 25-28.
吴智泉,许昊煜,陈建文. 环境友好型风电项目开发策略研究[J]. 中国经贸导刊(理论版), 2018(2): 25-28.
[13]
SUN Hongbin, GUO Qinglai, WU Wenchuan, et al. Wind farm distrituted energy management system: architecture and key technologies[J]. Power System Protection and Control, 2014, 42(5): 26-31.
孙宏斌,郭庆来,吴文传,等. 风电场分布式能量管理系统:体系架构和关键技术[J]. 电力系统保护与控制2014, 42(5): 26-31.
[14]
LIU Xiping, LIN Heyun. Overview of wind power generators and the control technologies[J]. Large Electric Machine and Hydraulic Turbine, 2007(3): 17-20, 55.
刘细平,林鹤云. 风力发电机及风力发电控制技术综述[J]. 大电机技术2007(3): 17-20, 55.
[15]
GUO Xin. Research on power control stategy of wide area wind farm clusters[D]. Shenyang: Shenyang University of Technology, 2018.
郭鑫. 广域风电集群的功率控制策略研究[D]. 沈阳:沈阳工业大学,2018.
[16]
LIN Li, ZHU Chenchen, ZHENG Taiyi, et al. Active power control of wind farm cluster and its strategy[J]. Automation of Electric Power Systems, 2014, 38(14): 9-16.
林俐,朱晨宸,郑太一,等. 风电集群有功功率控制及其策略[J]. 电力系统自动化2014, 38(14): 9-16.
[17]
WANG Y, MA X, JOYCE M J. Reducing sensor complexity for monitoring wind turbine performance using principal component analysis[J]. Renewable Energy, 2016, 97: 444-456.
[18]
CARBAJO S R. Routing in wireless sensor networks for wind turbine monitoring[J]. Pervasive and Mobile Computing, 2017, 39: 1-35.
[19]
PACHECO J. Wind turbine vibration based SHM system: influence of the sensors layout and noise[J]. Procedia Engineering, 2017, 199: 2160-2165.
[20]
DE FARIAS C M. A multi-sensor data fusion technique using data correlations among multiple applications[J]. Future Generation Computer Systems, 2019, 92: 109-118.
[21]
TAYLOR C N, BISHOP A N. Homogeneous functionals and Bayesian data fusion with unknown correlation[J]. Information Fusion, 2019, 45: 179-189.
[22]
HE Yaqi. Research and application on the key technology of multi-source heterogeneous data fusion[D]. Chengdu: University of Electronic Science and Technolgoy of China, 2018.
贺雅琪. 多源异构数据融合关键技术研究及其应用[D]. 成都:电子科技大学,2018.
[23]
SHI Chunyu. Research on method of multi-source heterogeneous data fusion for electric power equipment[D]. Beijing: North China Eletric Power University, 2018.
师春雨. 电力设备多源异构大数据融合方法研究[D]. 北京:华北电力大学,2018.
[24]
HABIBI H, HOWARD I, SIMANI S. Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: a review[J]. Renewable Energy, 2019, 135: 877-896.
[25]
CHO S, GAO Z, MOAN T. Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines[J]. Renewable Energy, 2018, 120: 306-321.
[26]
HELBING G, RITTER M. Deep learning for fault detection in wind turbines[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 189-198.
[27]
LEBRANCHU A. A combined mono- and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data[J]. ISA Transactions, 2018, 87: 272-281.
[28]
RUIZ M. Wind turbine fault detection and classification by means of image texture analysis[J]. Mechanical Systems and Signal Processing, 2018, 107: 149-167.
[29]
TENG W. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform[J]. Renewable Energy, 2019, 136: 393-402.
[30]
YU D. A radically data-driven method for fault detection and diagnosis in wind turbines[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 577-584.
PDF(13276 KB)

Accesses

Citation

Detail

Sections
Recommended

/